• pandas 增删改查


    原文链接:https://blog.csdn.net/zhangchuang601/article/details/79583551

    准备工作:
    增、删、改、查的方法有很多很多种,这里只展示出常用的几种。

    参数inplace默认为False,只能在生成的新数据块中实现编辑效果。当inplace=True时执行内部编辑,不返回任何值,原数据发生改变。

    >>> import numpy as np
    >>> import pandas as pd

    df = pd.DataFrame(data = [['lisa','f',22],['joy','f',22],['tom','m','21']],index = [1,2,3],columns = ['name','sex','age'])#测试数据。
    >>> df
    name sex age
    1 lisa f 22
    2 joy f 22
    3 tom m 21


    一、增
    1.按列增加。
    >>> citys = ['ny','zz','xy']
    >>> df.insert(0,'city',citys) #在第0列,加上column名称为city,值为citys的数值。
    >>> jobs = ['student','AI','teacher']
    >>> df['job'] = jobs #默认在df最后一列加上column名称为job,值为jobs的数据。
    >>> df.loc[:,'salary'] = ['1k','2k','2k','2k','3k'] #在df最后一列加上column名称为salary,值为等号右边数据。
    2.按行增加。
    >>> df.loc[4] = ['zz','mason','m',24,'engineer’]#若df中没有index为“4”的这一行的话,该行代码作用是往df中加一行index为“4”,值为等号右边值的数据。若df中已经有index为“4”的这一行,则该行代码作用是把df中index为“4”的这一行修改为等号右边数据。
    >>> df_insert = pd.DataFrame({'name':['mason','mario'],'sex':['m','f'],'age':[21,22]},index = [4,5])
    >>> ndf = df.append(df_insert,ignore_index = True) #返回添加后的值,并不会修改df的值。ignore_index默认为False,意思是不忽略index值,即生成的新的ndf的index采用df_insert中的index值。若为True,则新的ndf的index值不使用df_insert中的index值,而是自己默认生成。
    二、查
    1. df['column_name'] 和df[row_start_index, row_end_index] 
    df['name']
    df['gender']
    df[['name','gender']] #选取多列,多列名字要放在list里
    df[0:] #第0行及之后的行,相当于df的全部数据,注意冒号是必须的
    df[:2] #第2行之前的数据(不含第2行)
    df[0:1] #第0行
    df[1:3] #第1行到第2行(不含第3行)
    df[-1:] #最后一行
    df[-3:-1] #倒数第3行到倒数第1行(不包含最后1行即倒数第1行,这里有点烦躁,因为从前数时从第0行开始,从后数就是-1行开始,毕竟没有-0)
    2. df.loc[index,column] 
    # df.loc[index, column_name],选取指定行和列的数据
    df.loc[0,'name'] # 'Snow'
    df.loc[0:2, ['name','age']] #选取第0行到第2行,name列和age列的数据, 注意这里的行选取是包含下标的。
    df.loc[[2,3],['name','age']] #选取指定的第2行和第3行,name和age列的数据
    df.loc[df['gender']=='M','name'] #选取gender列是M,name列的数据
    df.loc[df['gender']=='M',['name','age']] #选取gender列是M,name和age列的数据
    3.  iloc[row_index, column_index]
    df.iloc[0,0] #第0行第0列的数据,'Snow'
    df.iloc[1,2] #第1行第2列的数据,32
    df.iloc[[1,3],0:2] #第1行和第3行,从第0列到第2列(不包含第2列)的数据
    df.iloc[1:3,[1,2] #第1行到第3行(不包含第3行),第1列和第2列的数据
    三、改
    3.1 改行列标题。
    >>> df.columns = ['name','gender','age'] #尽管我们只想把’sex’改为’gender’,但是仍然要把所有的列全写上,否则报错。
    >>> df.rename(columns = {'name':'Name','age':'Age'},inplace = True) #只修改name和age。inplace若为True,直接修改df,否则,不修改df,只是返回一个修改后的数据。
    >>> df.index = list('abc')#把index改为a,b,c.直接修改了df。
    >>> df.rename({1:'a',2:'b',3:'c'},axis = 0,inplace = True)#无返回值,直接修改df的index。

    3.2 改数值
    1. 使用loc
    >>> df.loc[1,'name'] = 'aa' #修改index为‘1’,column为‘name’的那一个值为aa。
    >>> df.loc[1] = ['bb','ff',11] #修改index为‘1’的那一行的所有值。
    >>> df.loc[1,['name','age']] = ['bb',11] #修改index为‘1’,column为‘name’的那一个值为bb,age列的值为11。
    2. 使用iloc[row_index, column_index]:
    >>> df.iloc[1,2] = 19#修改某一无素
    >>> df.iloc[:,2] = [11,22,33] #修改一整列
    >>> df.iloc[0,:] = ['lily','F',15] #修改一整行
    四、删
    1.删除行。
    >>> df.drop([1,3],axis = 0,inplace = False)#删除index值为1和3的两行,
    2.删除列。
    >>> df.drop(['name'],axis = 1,inplace = False) #删除name列。
    >>> del df['name'] #删除name列。
    >>> ndf = df.pop('age’)#删除age列,操作后,df都丢掉了age列,age列返回给了ndf。

    ————————————————
    版权声明:本文为CSDN博主「夏雨淋河」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
    原文链接:https://blog.csdn.net/zhangchuang601/article/details/79583551

  • 相关阅读:
    JQuery判断checkbox是否选中-批量
    浮动跟随
    当天时间戳范围
    统计兼职人员打标签数量
    submit回车提交影响
    js 数组去除空值
    js循环
    ajax
    滚动条位置
    oc基础-set和get方法的使用
  • 原文地址:https://www.cnblogs.com/sakura3/p/11969076.html
Copyright © 2020-2023  润新知