• Gym 100942A Three seamarks


    题目链接: http://codeforces.com/problemset/gymProblem/100942/A

    ------------------------------------------------------------------------------------

    我们可以把给定的角看成圆周角 从而算出圆心角

    然后每条边以及一个角可以确定两个可能的圆

    如果$M1 M2$确定出来的两个圆与$M2 M3$确定出来的两个圆圆心不同的话

    再判断这两个圆的交点即为答案 另外每次两个交点中一定有一个点是$M2$

    如果圆心相同就是四点共圆了

    此题卡精度比较严重 不要随意地使用三角函数库函数 尤其是$atan2$这类的

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <cmath>
      4 #include <algorithm>
      5 using namespace std;
      6 const double eps = 1e-6, inf = 1e8, pi = acos(-1.0);
      7 const double eps2 = 1e-2;
      8 struct point
      9 {
     10     double x, y;
     11     point(){}
     12     point(double _x,double _y)
     13     {
     14         x = _x;
     15         y = _y;
     16     }
     17     point operator - (const point &p) const
     18     {
     19         return point(x - p.x, y - p.y);
     20     }
     21     point operator + (const point &p) const
     22     {
     23         return point(x + p.x, y + p.y);
     24     }
     25     double operator * (const point &p) const
     26     {
     27         return x * p.y - y * p.x;
     28     }
     29     double operator / (const point &p) const
     30     {
     31         return x * p.x + y * p.y;
     32     }
     33 }a[3];
     34 struct circle
     35 {
     36     double x, y, r;
     37 }c[4];
     38 int t, cnt;
     39 double ang1, ang2;
     40 bool flag;
     41 double getdist2(const point &aa)
     42 {
     43     return (aa.x * aa.x + aa.y * aa.y);
     44 }
     45 double mycos(double B, double C, double A)
     46 {
     47     return (B * B + C * C - A * A) / (B * C * 2);
     48 }
     49 double mycos2(const point &aa, const point &bb, const point &cc)
     50 {
     51     double C2 = getdist2(aa - bb), A2 = getdist2(bb - cc), B2 = getdist2(cc - aa);
     52     return (B2 + C2 - A2) / (sqrt(B2 * C2) * 2);
     53 }
     54 point rotate(const point &p, double cost, double sint)
     55 {
     56     double x = p.x, y = p.y;
     57     return point(x * cost - y * sint, x * sint + y * cost);
     58 }
     59 void getcircle(const point &aa, const point &bb, double ang)
     60 {
     61     ang = (ang < pi * 0.5 ? ang: pi - ang);
     62     point mid;
     63     mid.x = (aa.x + bb.x) * 0.5;
     64     mid.y = (aa.y + bb.y) * 0.5;
     65     if(ang + eps < pi * 0.5)
     66     {
     67         double tan1 = tan(ang);
     68         c[cnt].x = mid.x + (aa.y - mid.y) / tan1;
     69         c[cnt].y = mid.y - (aa.x - mid.x) / tan1;
     70         c[cnt].r = sqrt(getdist2(mid - point(c[cnt].x, c[cnt].y)) + 
     71         getdist2(mid - aa));
     72         ++cnt;
     73         c[cnt].x = mid.x - (aa.y - mid.y) / tan1;
     74         c[cnt].y = mid.y + (aa.x - mid.x) / tan1;
     75         c[cnt].r = c[cnt - 1].r;
     76         ++cnt;
     77     }
     78     else
     79     {
     80         c[cnt].x = mid.x;
     81         c[cnt].y = mid.y;
     82         c[cnt].r = sqrt(getdist2(mid - aa));
     83         ++cnt;
     84         c[cnt] = c[cnt - 1];
     85         ++cnt;
     86     }
     87 }
     88 bool checkpoint(const point &re)
     89 {
     90     for(int i = 0; i < 3; ++i)
     91         if(getdist2(a[i] -re) < eps)
     92             return 0;
     93     double tmp = acos(mycos2(re, a[0], a[1])) - ang1 - pi;
     94     while(tmp < -eps2)
     95         tmp += pi;
     96     if(abs(tmp) > eps2)
     97         return 0;
     98     tmp = acos(mycos2(re, a[1], a[2])) - ang2 - pi;
     99     while(tmp < -eps2)
    100         tmp += pi;
    101     return abs(tmp) < eps2;
    102 }
    103 void getpoint2(const circle &c1)
    104 {
    105     double dab = sqrt(getdist2(point(a[0].x - a[1].x, a[0].y - a[1].y)));
    106     double ang = acos(dab / (c1.r * 2));
    107     ang -= ang1;
    108     double len = c1.r * 2 * cos(ang);
    109     double cang1 = cos(ang1);
    110     double l2 = len * cang1;
    111     point d, re;
    112     d.x = a[1].x + (a[0].x - a[1].x) * l2 / dab;
    113     d.y = a[1].y + (a[0].y - a[1].y) * l2 / dab;
    114     double l3 = len * sqrt(1 - cang1 * cang1);
    115     re.x = d.x + (a[0].y - a[1].y) * l3 / dab;
    116     re.y = d.y - (a[0].x - a[1].x) * l3 / dab;
    117     if(checkpoint(re))
    118     {
    119         printf("%.8f %.8f
    ", re.x, re.y);
    120         flag = 1;
    121         return;
    122     }
    123     re.x = d.x - (a[0].y - a[1].y) * l3 / dab;
    124     re.y = d.y + (a[0].x - a[1].x) * l3 / dab;
    125     if(checkpoint(re))
    126     {
    127         printf("%.8f %.8f
    ", re.x, re.y);
    128         flag = 1;
    129         return;
    130     }
    131 }
    132 void getpoint(circle c1, circle c2)
    133 {
    134     double dab = sqrt(getdist2(point(c1.x, c1.y) - point(c2.x, c2.y)));
    135     if(dab < eps)
    136     {
    137         getpoint2(c1);
    138         return;
    139     }
    140     if(c1.r > c2.r)
    141         swap(c1, c2);
    142     double cost = mycos(c1.r, dab, c2.r);
    143     double sint = sqrt(1 - cost * cost);
    144     point re = rotate(point(c2.x, c2.y) - point(c1.x, c1.y), cost, sint);
    145     re.x = c1.x + re.x * (c1.r / dab);
    146     re.y = c1.y + re.y * (c1.r / dab);
    147     if(getdist2(a[1] - re) < eps)
    148     {
    149         re = rotate(point(c2.x, c2.y) - point(c1.x, c1.y), cost, -sint);
    150         re.x = c1.x + re.x * (c1.r / dab);
    151         re.y = c1.y + re.y * (c1.r / dab);
    152     }
    153     if(!checkpoint(re))
    154         return;
    155     flag = 1;
    156     printf("%.8f %.8f
    ", re.x, re.y);
    157 }
    158 int main()
    159 {
    160     scanf("%d", &t);
    161     while(t--)
    162     {
    163         for(int i = 0; i < 3; ++i)
    164             scanf("%lf%lf", &a[i].x, &a[i].y);
    165         scanf("%lf%lf", &ang1, &ang2);
    166         ang1 = ang1 * pi / 180;
    167         ang2 = ang2 * pi / 180;
    168         cnt = 0;
    169         getcircle(a[0], a[1], ang1);
    170         getcircle(a[1], a[2], ang2);
    171         flag = 0;
    172             getpoint(c[0], c[2]);
    173         if(!flag)
    174             getpoint(c[0], c[3]);
    175         if(!flag)
    176             getpoint(c[1], c[2]);
    177         if(!flag)
    178             getpoint(c[1], c[3]);
    179     }
    180     return 0;
    181 }
  • 相关阅读:
    静态成员在类中的初始化
    博客中尖括号不显示的问题
    声明vector对象保存函数指针
    返回数组指针的函数
    C++ 指针与引用的差别
    Configure Eclipse “Content Assist”
    How to install Eclipse-Color-Theme
    国内 git 托管平台
    SHA1 对文件求信息摘要的实现
    SHA1 对字符串求摘要的实现
  • 原文地址:https://www.cnblogs.com/sagitta/p/5350959.html
Copyright © 2020-2023  润新知