• Spark ML 之 推荐算法项目(下)


    一、整体思路

    图1

    图2

    二、代码分析

    1)LR数据准备:

    1、合并数据。用户见过的商品,根据用户行为,区分喜欢0-不喜欢1;用户没见过的商品,标记为2

      // 判断用户是否喜欢商品 假设用户下单或存放购物车 就喜欢 否则不喜欢
      val isLove: UserDefinedFunction = udf{
        (act:String)=>{
          if(act.equalsIgnoreCase("BROWSE")
            ||act.equalsIgnoreCase("COLLECT")){
            0
          }else{
            1
          }
        }
      }
    import spark.implicits._
        // 获取全局热卖的数据
        // (cust_id,good_id,rank)
        val hot = HDFSConnection.readDataToHDFS(spark,"/myshops/dwd_hotsell")
          .select($"cust_id",$"good_id")
        // 获取分组召回的数据
        val group = HDFSConnection.readDataToHDFS(spark,"/myshops/dwd_kMeans")
          .select($"cust_id",$"good_id")
        // 获取ALS召回数据
        val als = HDFSConnection.readDataToHDFS(spark,"/myshops/dwd_ALS_Iter20")
          .select($"cust_id",$"good_id")
        // 获取用户下单数据,用户下单或购物车=> 喜欢 else=> 不喜欢
        val order = spark.sparkContext
          .textFile("file:///D:/logs/virtualLogs/*.log")
          .map(line=>{
            val arr = line.split(" ")
            (arr(0),arr(2),arr(3))
          })
          .toDF("act","cust_id","good_id")
          .withColumn("flag",isLove($"act"))
          .drop("act")
          .distinct()
          .cache()
        // 三路召回合并(包含冷用户=> 2)
        // 用户完全没有见过的商品填充为2
        val all = hot.union(group).union(als)
          .join(order,Seq("cust_id","good_id"),"left")
          .na.fill(2)

    2、准备LR模型需要的数据:label:喜不喜欢,features:user和goods的属性,并归一化

      // 简单数据归一化
      val priceNormalize: UserDefinedFunction =udf{
        (price:String)=>{
      // maxscale & minscale
          val p:Double = price.toDouble
          p/(10000+p)
        }
      }
      def goodNumberFormat(spark: SparkSession): DataFrame ={
        val good_infos = MYSQLConnection.readMySql(spark,"goods")
          .filter("is_sale=1")
          .drop("spu_pro_name","tags","content","good_name","created_at","update_at","good_img_pos","sku_good_code")
        // 品牌的数字化处理
        val brand_index = new StringIndexer().setInputCol("brand_name").setOutputCol("brand")
        val bi = brand_index.fit(good_infos).transform(good_infos)
        // 商品分类的数字化
        val type_index = new StringIndexer().setInputCol("cate_name").setOutputCol("cate")
        val ct = type_index.fit(bi).transform(bi)
        // 原和现价归一化
        import spark.implicits._
        val pc = ct.withColumn("nprice",priceNormalize($"price"))
          .withColumn("noriginal",priceNormalize($"original"))
          .withColumn("nsku_num",priceNormalize($"sku_num"))
          .drop("price","original","sku_num")
        // 特征值转数字化
        val feat_index = new StringIndexer().setInputCol("spu_pro_value").setOutputCol("pro_value")
        feat_index.fit(pc).transform(pc).drop("spu_pro_value")
      }
    // 每一列添加LR回归算法需要的用户自然属性,用户行为属性,商品自然属性
        val user_info_df = KMeansHandler.user_act_info(spark)
        // 从数据库获取商品中影响商品销售的自然属性
        val good_infos = goodNumberFormat(spark)
        // 将3路召回的数据和用户信息以及商品信息关联
        val ddf = all.join(user_info_df,Seq("cust_id"),"inner")
          .join(good_infos,Seq("good_id"),"inner")
        // 数据全体转 Double
        val columns = ddf.columns.map(f => col(f).cast(DoubleType))
        val num_fmt = ddf.select(columns:_*)
        // 特征列聚合到一起形成密集向量
        val va = new VectorAssembler().setInputCols(
          Array("province_id","city_id","district_id","sex","marital_status","education_id","vocation","post","compId","mslevel","reg_date","lasttime","age","user_score","logincount","buycount","pay","is_sale","spu_pro_status","brand","cate","nprice","noriginal","nsku_num","pro_value"))
          .setOutputCol("orign_feature")
        val ofdf = va.transform(num_fmt).select($"cust_id",$"good_id",$"flag".alias("label"),$"orign_feature")
        // 数据归一化处理
        val mmScaler = new MinMaxScaler().setInputCol("orign_feature").setOutputCol("features")
        val res = mmScaler.fit(ofdf).transform(ofdf)
          .select($"cust_id", $"good_id", $"label", $"features")

    3、准备数据分两类:一类label=0/1 用于预测,一类label=2 中的普通用户 用于推荐

     (res.filter("label!=2"),res.filter("label=2")) 

    2) LR逻辑回归:

    1、取出冷用户,计算冷用户的全局热卖推荐

    思路:

    普通ID
    left join 冷+普通ID
    => cold (cust_id,good_id,rank)

    val allHot = HDFSConnection.readDataToHDFS(spark,"/myshops/dwd_hotsell")
        // 读出有行为的用户
        val txt = spark.sparkContext.textFile("file:///D:/logs/virtualLogs/*.log").cache()
        import spark.implicits._
        val normalUser = txt.map(line=>{
          val arr = line.split(" ")
          (arr(2),1)
        }).toDF("cust_id","flag")
          .distinct().cache()
        // 冷用户flag=null,取出冷用户,求每个用户热卖前十
        // .select($"cust_id",$"good_id",$"rank")
        // 所有用户-普通用户flag=1 => 能匹配上的flag=1,不能匹配上的flag=null
        val win = Window.partitionBy("cust_id").orderBy(desc("sellnum"))
        // cold (cust_id,good_id,rank)
        val cold = allHot.join(normalUser,Seq("cust_id"),"left")
          .filter("flag is null")
          // cold前10
        val coldRecommend = cold.select($"cust_id",$"good_id",
            row_number().over(win).alias("rank"))
          .filter(s"rank<=${rank}")

    2、从predict中剔除冷用户

    思路:

    ($"cust_id", $"good_id", $"label", $"features")
    left join
    cold => (cust_id,good_id,rank,flag=1)
    .filter flag = null

     val (train,predict):Tuple2[DataFrame,DataFrame] = LRDataHandler.LRdata(spark)
        // 从 predict中剔除冷用户
     val coldId = cold.map(x=>{case(cust_id,good_id,rank)=>(cust_id,1)})
          .toDF("cust_id","flag")
     val normalPredict = predict.join(coldId,Seq("cust_id"),"left").filter("flag is null")

    3、LR模型是否已经存在,不在就建

        // 用户接触过的商品作为建立LR模型的训练数据
        // 先检查HDFS上是否已有建造好的LR模型,如果有就直接获取
            val path = new Path(HDFSConnection.paramMap("hadoop_url")+"/myshops/LR_model"); //声明要操作(删除)的hdfs 文件路径
            val hadoopConf = spark.sparkContext.hadoopConfiguration
            val hdfs = org.apache.hadoop.fs.FileSystem.get(new URI(HDFSConnection.paramMap("hadoop_url")+"/myshops/LR_model"),hadoopConf)
            var model:LogisticRegressionModel = null;
            if(hdfs.exists(path)) {
               model = HDFSConnection.readLRModelToHDFS("/myshops/LR_model")
            }else{
              val lr = new LogisticRegression().setMaxIter(20).setRegParam(0.01)
              model = lr.fit(train)
              HDFSConnection.writeLRModelToHDFS(model,"/myshops/LR_model")
            }

    4、用LR模型预测普通人需要被推荐哪些他没见过的商品

    //Transforms dataset by reading from [[featuresCol]]
        // 只需要predict中的 featuresCol
        // predict需要踢出冷用户
        val res = model.transform(normalPredict).drop("features")
        import spark.implicits._
        val wnd = Window.partitionBy($"cust_id").orderBy(desc("score"))
        // 普通用户推薦的商品 (三路召回后建立 LR模型) (cust_id,good_id,rank)
        val normalRecommend = res.select("cust_id","good_id","probability")
          .rdd.map{case(Row(uid:Double,gid:Double,score:DenseVector))=>(uid,gid,score(1))}
          .toDF("cust_id","good_id","score")
          .select($"cust_id",$"good_id",row_number().over(wnd).alias("rank"))
          .filter(s"rank<=${rank}")

    5、普通人用LR预测+冷用户用全局热卖,合并推荐结果

       // 合并冷普用户推荐结果 (cust_id,good_id,rank)
        val recommend = normalRecommend.union(coldRecommend)
        MYSQLConnection.writeTable(spark,recommend,"userrecommend")
  • 相关阅读:
    toolbar: '#tbSuppliers', 在上面, toolbar: 'tbSuppliers',在下面
    .net出现80080005错误的解决办法
    The expression of type List needs unchecked conversion to conform to
    我天性不宜交际
    一些资料
    $.connection.hub.start().done(function () { alert('signalR started'); }).fail
    使用 Web Notifications
    JS获取几种URL地址的方法
    随机生成汉字、字母、数字的方法
    linq剔除重复项
  • 原文地址:https://www.cnblogs.com/sabertobih/p/13873271.html
Copyright © 2020-2023  润新知