• 在Spark集群中,集群的节点个数、RDD分区个数、​cpu内核个数三者与并行度的关系


    梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数、Executor数、core数目的关系。

    输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block
    当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片,称为InputSplit,注意InputSplit不能跨越文件。
    随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。
    随后这些具体的Task每个都会被分配到集群上的某个节点的某个Executor去执行。
    • 每个节点可以起一个或多个Executor。
    • 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
    • 每个Task执行的结果就是生成了目标RDD的一个partiton


    注意: 这里的core是虚拟的core而不是机器的物理CPU核,可以理解为就是Executor的一个工作线程。

    而 Task被执行的并发度 = Executor数目 * 每个Executor核数。

    至于partition的数目:
    • 对于数据读入阶段,例如sc.textFile,输入文件被划分为多少InputSplit就会需要多少初始Task。
    • 在Map阶段partition数目保持不变。
    • 在Reduce阶段,RDD的聚合会触发shuffle操作,聚合后的RDD的partition数目跟具体操作有关,例如repartition操作会聚合成指定分区数,还有一些算子是可配置的。
  • 相关阅读:
    软件工程-个人最终总结
    结对编程—电梯调度
    第三周(第三作业)感想
    周三第二个作业
    VS2013安装和单元测试
    对京东的评价
    简单的四则运算
    迷茫的软件工程
    vlan 和 子网
    ECLIPSE的jar包和文件的导入导出
  • 原文地址:https://www.cnblogs.com/rxingyue/p/spark.html
Copyright © 2020-2023  润新知