• redis压力测试【转】


    本文转自: https://segmentfault.com/a/1190000015571891

    redis自带的redis-benchmark工具

    Redis 自带了一个叫redis-benchmark的工具来模拟 N 个客户端同时发出 M 个请求。 (类似于 Apache ab 程序)。你可以使用 redis-benchmark -h 来查看基准参数。

    • 1 使用方法 redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>]
    序号选项描述默认值
    1 -h 指定redis server 主机名 localhost
    2 -p 指定redis 服务端口 6379
    3 -s 指定服务器socket  
    4 -c 指定并发连接数 50
    5 -n 指定请求数 10000
    6 -d 以字节形式指定SET/GET值的数值大小 2
    7 -k 1=keepalive 0=reconnect 1
    8 -r SET/GET/INCR使用随机key, SADD使用随机值  
    9 -P 通过管道传输<numreq>请求 1
    10 -q 强制退出redis.仅显示query/sec值  
    11 -csv 以csv格式输出  
    12 -l 生成循环 永久执行测试  
    13 -t 仅运行以逗号分隔的测试命令列表  
    14 -I Idle模式,仅打开N个idle连接并等待
    [root@redis-test-slave ~ ]$ redis-benchmark --help
    Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>]
    
     -h <hostname>      Server hostname (default 127.0.0.1)
     -p <port>          Server port (default 6379)
     -s <socket>        Server socket (overrides host and port)
     -a <password>      Password for Redis Auth
     -c <clients>       Number of parallel connections (default 50)
     -n <requests>      Total number of requests (default 100000)
     -d <size>          Data size of SET/GET value in bytes (default 2)
     --dbnum <db>        SELECT the specified db number (default 0)
     -k <boolean>       1=keep alive 0=reconnect (default 1)
     -r <keyspacelen>   Use random keys for SET/GET/INCR, random values for SADD
      Using this option the benchmark will expand the string __rand_int__
      inside an argument with a 12 digits number in the specified range
      from 0 to keyspacelen-1. The substitution changes every time a command
      is executed. Default tests use this to hit random keys in the
      specified range.
     -P <numreq>        Pipeline <numreq> requests. Default 1 (no pipeline).
     -e                 If server replies with errors, show them on stdout.
                        (no more than 1 error per second is displayed)
     -q                 Quiet. Just show query/sec values
     --csv              Output in CSV format
     -l                 Loop. Run the tests forever
     -t <tests>         Only run the comma separated list of tests. The test
                        names are the same as the ones produced as output.
     -I                 Idle mode. Just open N idle connections and wait.
    Examples:
    
     Run the benchmark with the default configuration against 127.0.0.1:6379:
       # 运行默认配置下的测试
       $ redis-benchmark
    
     Use 20 parallel clients, for a total of 100k requests, against 192.168.1.1:
       # 指定并发数20,总请求数为10W,redis server主机IP为192.168.1.1
       $ redis-benchmark -h 192.168.1.1 -p 6379 -n 100000 -c 20
    
     Fill 127.0.0.1:6379 with about 1 million keys only using the SET test:
       # 测试SET随机数性能
       $ redis-benchmark -t set -n 1000000 -r 100000000
    
     Benchmark 127.0.0.1:6379 for a few commands producing CSV output:
       # 测试结果输出到csv
       $ redis-benchmark -t ping,set,get -n 100000 --csv
    
     Benchmark a specific command line:
       # 执行特定命令下的测试
       $ redis-benchmark -r 10000 -n 10000 eval 'return redis.call("ping")' 0
    
     Fill a list with 10000 random elements:
       # 测试list入队的速度
       $ redis-benchmark -r 10000 -n 10000 lpush mylist __rand_int__
    
     On user specified command lines __rand_int__ is replaced with a random integer
     with a range of values selected by the -r option.
    
    • 2 实际测试过程

      • redis-benchmark 默认参数下的测试
                [root@redis-test-slave ~ ]$ redis-benchmark
            ====== PING_INLINE ======
              100000 requests completed in 0.83 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            120192.30 requests per second
            
            ====== PING_BULK ======
              100000 requests completed in 0.85 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            118203.30 requests per second
            
            ====== SET ======
              100000 requests completed in 0.80 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            125786.16 requests per second
            
            ====== GET ======
              100000 requests completed in 0.79 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            125944.58 requests per second
            
            ====== INCR ======
              100000 requests completed in 0.79 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            126903.55 requests per second
            
            ====== LPUSH ======
              100000 requests completed in 0.79 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            126262.62 requests per second
            
            ====== RPUSH ======
              100000 requests completed in 0.79 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            126103.41 requests per second
            
            ====== LPOP ======
              100000 requests completed in 0.80 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            99.97% <= 1 milliseconds
            100.00% <= 1 milliseconds
            125628.14 requests per second
            
            ====== RPOP ======
              100000 requests completed in 0.80 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            125786.16 requests per second
            
            ====== SADD ======
              100000 requests completed in 0.80 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            125786.16 requests per second
            
            ====== HSET ======
              100000 requests completed in 0.79 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            126103.41 requests per second
            
            ====== SPOP ======
              100000 requests completed in 0.80 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            125628.14 requests per second
            
            ====== LPUSH (needed to benchmark LRANGE) ======
              100000 requests completed in 0.79 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            126262.62 requests per second
            
            ====== LRANGE_100 (first 100 elements) ======
              100000 requests completed in 0.79 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            127388.53 requests per second
            
            ====== LRANGE_300 (first 300 elements) ======
              100000 requests completed in 0.79 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            127388.53 requests per second
            
            ====== LRANGE_500 (first 450 elements) ======
              100000 requests completed in 0.78 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            127551.02 requests per second
            
            ====== LRANGE_600 (first 600 elements) ======
              100000 requests completed in 0.79 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            126742.72 requests per second
            
            ====== MSET (10 keys) ======
              100000 requests completed in 0.77 seconds
              50 parallel clients
              3 bytes payload
              keep alive: 1
            
            100.00% <= 0 milliseconds
            129701.68 requests per second
    

    参考

        http://www.redis.cn/topics/benchmarks.html
  • 相关阅读:
    Java基础知识强化之IO流笔记39:字符流缓冲流之复制文本文件案例01
    阿里云服务器绕过25端口发邮件
    springboot在lunix后台启动,退出账号也不关闭
    创建Maven项目出错 pom出错
    corn表达式 经典
    开发微信公众号基本配置参数错误
    Spring与ActiveMQ整合
    log4j.properties 打印到控制台 写法
    如何在spring环境中做单元测试
    添加jar包到本地Maven仓库
  • 原文地址:https://www.cnblogs.com/rwxwsblog/p/13735075.html
Copyright © 2020-2023  润新知