[LOJ 2718][UOJ 393][BZOJ 5415][NOI 2018]归程
题意
给定一张无向图, 每条边有一个距离和一个高度. 再给定 (q) 组可能在线的询问, 每组询问给定一个点 (v) 和一个高度 (h), 鸭子德可以先无需花费地在高度大于 (h) 的边上任意行动, 然后可以在任意点开始以花费等于距离的模式行动. 问最小的花费.
(|V|le 2 imes 10^5,|E|le 4 imes 10^5,qle 4 imes 10^5,hle 10^9).
题解
显然带花费部分的行动是一个单源最短路. 那么我们只要求出无花费部分的行动可以到达的点中哪一个点距离 (1) 最近就可以了.
发现无花费部分是个类似瓶颈路的问题, 我们可以在 Kruskal 重构树上倍增求出能到达的点所组成的子树, 输出这个子树中的点到 (1) 的最短距离就可以了.
为啥我要写这个裸题的题解呢?
一个原因是存板子, 另一个原因是这个沙雕强制在线把我卡掉了 (3) 分qaq...具体情况
参考代码
#include <bits/stdc++.h>
const int MAXV=4e5+10;
const int MAXE=1e6+10;
struct Edge{
int from;
int to;
int dis;
int pos;
Edge* next;
bool friend operator>(const Edge& a,const Edge& b){
return a.pos>b.pos;
}
};
Edge E[MAXE];
Edge Ex[MAXE];
Edge* head[MAXV];
Edge* top=E;
int v;
int e;
int q;
int n;
int k;
int maxv;
int dis[MAXV];
int pos[MAXV];
int ufs[MAXV];
bool vis[MAXV];
int pprt[20][MAXV];
int* prt=pprt[0];
int ReadInt();
void Kruskal();
int FindRoot(int);
void Dijkstra(int);
void Insert(int,int,int,int);
int main(){
int T=ReadInt();
while(T--){
memset(pprt,0,sizeof(pprt));
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
top=E;
n=v=ReadInt();
e=ReadInt();
for(int i=0;i<e;i++){
int a=ReadInt(),b=ReadInt(),c=ReadInt(),d=ReadInt();
Ex[i]=Edge({a,b,c,d,NULL});
Insert(a,b,c,d);
Insert(b,a,c,d);
}
q=ReadInt(),k=ReadInt(),maxv=ReadInt();
Dijkstra(1);
Kruskal();
int lg=0;
for(int i=1;(1<<i)<=v;i++){
lg=i;
for(int j=1;j<=v;j++)
pprt[i][j]=pprt[i-1][pprt[i-1][j]];
}
int lastans=0;
while(q--){
int s=(0ll+ReadInt()+k*lastans-1)%n+1,h=(0ll+ReadInt()+k*lastans)%(maxv+1);
for(int i=lg;i>=0;i--){
if(pos[pprt[i][s]]>h)
s=pprt[i][s];
}
printf("%d
",lastans=dis[s]);
}
}
return 0;
}
void Kruskal(){
std::sort(Ex,Ex+e,std::greater<Edge>());
for(int i=1;i<=v;i++)
ufs[i]=i;
int& cur=v;
for(int i=0;i<e;i++){
int a=FindRoot(Ex[i].from);
int b=FindRoot(Ex[i].to);
if(a!=b){
++cur;
pos[cur]=Ex[i].pos;
dis[cur]=std::min(dis[a],dis[b]);
prt[a]=cur;
prt[b]=cur;
ufs[cur]=cur;
ufs[a]=cur;
ufs[b]=cur;
}
}
}
void Dijkstra(int s){
std::priority_queue<std::pair<int,int>> q;
memset(dis,0x7F,sizeof(dis));
dis[s]=0;
q.emplace(0,s);
while(!q.empty()){
s=q.top().second;
q.pop();
if(vis[s])
continue;
vis[s]=true;
for(Edge* i=head[s];i!=NULL;i=i->next){
if(dis[i->to]>dis[s]+i->dis){
dis[i->to]=dis[s]+i->dis;
q.emplace(-dis[i->to],i->to);
}
}
}
}
inline void Insert(int from,int to,int dis,int pos){
top->from=from;
top->to=to;
top->dis=dis;
top->pos=pos;
top->next=head[from];
head[from]=top++;
}
int FindRoot(int x){
return ufs[x]==x?ufs[x]:ufs[x]=FindRoot(ufs[x]);
}
inline int ReadInt(){
int x=0;
register char ch=getchar();
while(!isdigit(ch))
ch=getchar();
while(isdigit(ch)){
x=x*10+ch-'0';
ch=getchar();
}
return x;
}