• [LOJ 6435][PKUSC 2018]星际穿越


    [LOJ 6435][PKUSC 2018]星际穿越

    题意

    给定 (n) 个点, 每个点与 ([l_i,i-1]) 之间的点建立有单位距离的双向边. (q) 组询问从 (x) 走到 ([l,r]) 中的随机一点的期望距离. 输出既约分数.

    (n,qle 3 imes 10^5), (l<r<x).

    题解

    显然对于一个 (k), (k) 步之内能到达的点是 ([1,x)) 的一个后缀. 那么也就是说 ([1,x)) 中的点的答案被分成了若干段, 每段的答案相同且向前递增.

    手动模拟一下, 我们发现第一步可以走到的左端点是 (l_x), 第二步可以走到的就是 (minlimits_{kge l_x}l_k) 了. 原因是所有可能一步到达 (minlimits_{kge l_x}l_k) 的点都必然可以被 (x) 一步到达(如果 (l_k)(k>x) 处取得最小值, 那么显然 (l_k<x). 又由于 (k) 连接的是 ([l_k,k)), 那么必然和 (x) 直接相连). 且后面的步骤都是形如 (l_k) 的后缀 (min) 的形式.

    于是我们可以在第二步及以后尝试倍增.

    倍增的同时不仅记录到达的左端点, 同时记录一下倍增时跳过的点的距离总和. 这样就可以在 (O(log n)) 的时间内计算出 (x)([l,x)) 内的所有点的最短路之和了. 两个后缀和相减即可得到 ([l,r]) 内的答案.

    最后约分一下输出就完了. 虽然最终答案是 (O(n^2)) 级别的但是数据比较弱并没有爆 int...

    参考代码

    #include <bits/stdc++.h>
    
    const int MAXN=3e5+10;
    
    int n;
    int q;
    int l[MAXN];
    int lg[MAXN];
    int sum[20][MAXN];
    int prev[20][MAXN];
    int* minl=prev[0];
    
    int ReadInt();
    int Calc(int,int);
    
    int main(){
    	n=ReadInt();
    	for(int i=2;i<=n;i++)
    		l[i]=ReadInt();
    	q=ReadInt();
    	l[1]=1;
    	minl[n+1]=n;
    	for(int i=n;i>=1;i--){
    		minl[i]=std::min(l[i],minl[i+1]);
    		sum[0][i]=i-minl[i];
    	}
    	for(int i=1;i<=n;i++)
    		sum[0][i]=i-minl[i];
    	for(int i=1;(1<<i)<=n;i++){
    		lg[1<<i]=1;
    		for(int j=1;j<=n;j++){
    			prev[i][j]=prev[i-1][prev[i-1][j]];
    			sum[i][j]=sum[i-1][j]+sum[i-1][prev[i-1][j]]+((prev[i-1][j]-prev[i][j])<<(i-1));
    		}
    	}
    	for(int i=1;i<=n;i++)
    		lg[i]+=lg[i-1];
    	for(int i=0;i<q;i++){
    		int l=ReadInt(),r=ReadInt(),pos=ReadInt();
    		int a=Calc(pos,l)-Calc(pos,r+1);
    		int b=r-l+1;
    		int gcd=std::__gcd(a,b);
    		printf("%d/%d
    ",a/gcd,b/gcd);
    	}
    	return 0;
    }
    
    int Calc(int pos,int lim){
    	if(l[pos]<lim)
    		return pos-lim;
    	int dis=0,p=l[pos],ans=pos-lim;
    //	printf("x %d %d
    ",ans,p);
    	for(int i=lg[p];i>=0;i--){
    		if(lim<=prev[i][p]){
    			ans+=sum[i][p]+(p-prev[i][p])*dis;
    //			printf("$ %d Q(%d,%d) %d
    ",i,pos,lim,ans);
    			p=prev[i][p];
    			dis|=(1<<i);
    		}
    	}
    	return ans+(p-lim)*(dis+1);
    }
    
    inline int ReadInt(){
    	int x=0;
    	register char ch=getchar();
    	while(!isdigit(ch))
    		ch=getchar();
    	while(isdigit(ch)){
    		x=x*10+ch-'0';
    		ch=getchar();
    	}
    	return x;
    }
    
    

  • 相关阅读:
    keepalived.conf配置说明
    监控端口是否开放,端口未开放关闭虚拟ip,端口开放启动虚拟IP
    lvs UDP端口负载均衡配置
    keepalived自动安装脚本
    Keepalived+LVS实现高可用负载均衡双主模式
    cookie和session的区别
    jmeter 关联
    浏览器缓存详解:expires,cache-control,last-modified,etag详细说明
    Session、Cookie、Cache、Token分别是什么及区别
    获取MyBatis
  • 原文地址:https://www.cnblogs.com/rvalue/p/10935041.html
Copyright © 2020-2023  润新知