• GuGuFishtion HDU


    GuGuFishtion (HDU - 6390)

    题意:

    定义(G_u (a,b)=frac{phi(ab)}{phi(a)phi(b)})

    ((sumlimits_{a=1}^msumlimits_{b=1}^nG_u (a,b))pmod p)

    题解:

    考虑(phi(x) = x*(1-frac{1}{p_1})*(1-frac{1}{p_2})...*(1-frac{1}{p_n}))

    (G_u (a,b))的分子与分母按上述分解、约分后,得(frac{1}{(1-frac{1}{p_1})(1-frac{1}{p_2})(1-frac{1}{p_3})...(1-frac{1}{p_k})}),其中(p_1*p_2*p_3...p_k=gcd(a,b))

    上下同时乘以(gcd(a,b)),则(G_u (a,b)=frac{gcd(a,b)}{phi(gcd(a,b))})

    问题变成了求((sumlimits_{a=1}^msumlimits_{b=1}^nfrac{gcd(a,b)}{phi(gcd(a,b))})pmod p)

    上式 (=(sum_d^{min(n, m)}frac{d}{phi(d)}sumlimits_{a=1}^msumlimits_{b=1}^n[gcd(a,b)==d])pmod p)

    可以枚举(d),对于(sumlimits_{a=1}^msumlimits_{b=1}^n[gcd(a,b)==d]),即(sumlimits_{a=1}^{m/d}sumlimits_{b=1}^{n/d}[gcd(a,b)==1]),用莫比乌斯反演求。

    代码:

    #include <bits/stdc++.h>
    #define fopi freopen("in.txt", "r", stdin)
    #define fopo freopen("out.txt", "w", stdout)
    using namespace std;
    typedef long long LL;
    typedef long double ld;
    const int maxn = 1e6 + 10;
    
    int check[maxn], phi[maxn], mu[maxn], prime[maxn];
    LL inv[maxn], sum[maxn];
    
    void init(int N) {
        memset(check, false, sizeof(check));
        mu[1] = 1;
        phi[1] = 1;
        int tot = 0;
        for (int i = 2; i <= N; i++) {
            if (!check[i]) {
                prime[tot++] = i;
                mu[i] = -1;
                phi[i] = i-1;
            }
            for (int j = 0; j < tot; j++) {
                if (i * prime[j] > N) break;
                check[i * prime[j]] = true;
                if (i % prime[j] == 0) {
                    mu[i * prime[j]] = 0;
                    phi[i * prime[j]] = phi[i] * prime[j];
                    break;
                }
                else {
                    mu[i * prime[j]] = -mu[i];
                    phi[i * prime[j]] = phi[i] * (prime[j]-1);
                }
            }
        }
    }
    
    LL solve(int n, int m, int p) {
        LL res = 0;
        for (int i = 1, la = 0; i <= m; i = la+1) {
            la = min(n/(n/i), m/(m/i));
            res = (res + 1ll * (sum[la] - sum[i-1]) * (n/i) % p * (m/i) % p) % p;
        }
        return res;
    }
    
    int T, n, m, p;
    int main() {
        init(maxn - 10);
        
        scanf("%d", &T);
        while(T--) {
            scanf("%d%d%d", &n, &m, &p);
            if (n < m) swap(n, m);
    
            inv[1] = 1;
            for (int i = 2; i <= m; i++)
                inv[i] = 1ll * inv[p % i] * (p - p/i) % p;
            for (int i = 1; i <= m; i++)
                sum[i] = (sum[i-1] + mu[i] + p) % p;
    
            LL ans = 0;
            for (int i = 1; i <= m; i++) {
                ans = (ans + 1ll * i * inv[phi[i]] % p * solve(n/i, m/i, p) % p) % p;
            }
    
            printf("%lld
    ", ans);
        }
    }
    
  • 相关阅读:
    github绑定host
    PHP安全过滤函数
    PHP界定符 <<<EOT
    file_get_contents模拟表单(POST/GET方式提交)
    排序算法(一)冒泡排序
    MySQL的limit查询优化
    SQL Server日期函数集合
    系统查找存储过程和触发器
    C#中跳转页面有那几种方法,简述其区别
    知道sql数据库中的哪个数据表最大
  • 原文地址:https://www.cnblogs.com/ruthank/p/11366435.html
Copyright © 2020-2023  润新知