2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛
Time Limit: 3 Sec Memory Limit: 64 MB Submit: 474 Solved: 346 [Submit][Status][Discuss]Description
经过了几周的辛苦工作,贝茜终于迎来了一个假期.作为奶牛群中最会社交的牛,她希望去拜访N(1<=N<=50000)个朋友.这些朋友被标号为1..N.这些奶牛有一个不同寻常的交通系统,里面有N-1条路,每条路连接了一对编号为C1和C2的奶牛(1 <= C1 <= N; 1 <= C2 <= N; C1<>C2).这样,在每一对奶牛之间都有一条唯一的通路. FJ希望贝茜尽快的回到农场.于是,他就指示贝茜,如果对于一条路直接相连的两个奶牛,贝茜只能拜访其中的一个.当然,贝茜希望她的假期越长越好,所以她想知道她可以拜访的奶牛的最大数目.
Input
第1行:单独的一个整数N 第2..N行:每一行两个整数,代表了一条路的C1和C2.
Output
单独的一个整数,代表了贝茜可以拜访的奶牛的最大数目.
Sample Input
7
6 2
3 4
2 3
1 2
7 6
5 6
INPUT DETAILS:
Bessie knows 7 cows. Cows 6 and 2 are directly connected by a road,
as are cows 3 and 4, cows 2 and 3, etc. The illustration below depicts the
roads that connect the cows:
1--2--3--4
|
5--6--7
6 2
3 4
2 3
1 2
7 6
5 6
INPUT DETAILS:
Bessie knows 7 cows. Cows 6 and 2 are directly connected by a road,
as are cows 3 and 4, cows 2 and 3, etc. The illustration below depicts the
roads that connect the cows:
1--2--3--4
|
5--6--7
Sample Output
4
OUTPUT DETAILS:
Bessie can visit four cows. The best combinations include two cows
on the top row and two on the bottom. She can't visit cow 6 since
that would preclude visiting cows 5 and 7; thus she visits 5 and
7. She can also visit two cows on the top row: {1,3}, {1,4}, or
{2,4}.
OUTPUT DETAILS:
Bessie can visit four cows. The best combinations include two cows
on the top row and two on the bottom. She can't visit cow 6 since
that would preclude visiting cows 5 and 7; thus she visits 5 and
7. She can also visit two cows on the top row: {1,3}, {1,4}, or
{2,4}.
设$dp[i][0]$表示$i$不选时在以$i$为根的子树中最多能选多少
$dp[i][1]$表示$i$要选时在以$i$为根的子树中最多能选多少
转移显然
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std; char buf[10000000], *ptr = buf - 1; inline int readint(){ int f = 1, n = 0; char ch = *++ptr; while(ch < '0' || ch > '9'){ if(ch == '-') f = -1; ch = *++ptr; } while(ch <= '9' && ch >= '0'){ n = (n << 1) + (n << 3) + ch - '0'; ch = *++ptr; } return f * n; } const int maxn = 50000 + 10; struct Edge{ int to, next; Edge(){} Edge(int _t, int _n): to(_t), next(_n){} }e[maxn * 2]; int fir[maxn] = {0}, cnt = 0; inline void ins(int u, int v){ e[++cnt] = Edge(v, fir[u]); fir[u] = cnt; e[++cnt] = Edge(u, fir[v]); fir[v] = cnt; } int dp[maxn][2]; void dfs(int u, int fa){ dp[u][0] = 0; dp[u][1] = 1; for(int v, i = fir[u]; i; i = e[i].next){ v = e[i].to; if(v == fa) continue; dfs(v, u); dp[u][0] += max(dp[v][0], dp[v][1]); dp[u][1] += dp[v][0]; } } int main(){ fread(buf, sizeof(char), sizeof(buf), stdin); int N = readint(); for(int u, v, i = 1; i < N; i++){ u = readint(); v = readint(); ins(u, v); } srand(19260817); int root = rand() * rand() % N + 1; dfs(root, 0); printf("%d ", max(dp[root][0], dp[root][1])); return 0; }