• 数据结构--线段树--lazy延迟操作


    A Simple Problem with Integers
    Time Limit: 5000MS   Memory Limit: 131072K
    Total Submissions: 53749   Accepted: 16131
    Case Time Limit: 2000MS

    Description

    You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

    Input

    The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
    The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
    Each of the next Q lines represents an operation.
    "C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
    "Q a b" means querying the sum of AaAa+1, ... , Ab.

    Output

    You need to answer all Q commands in order. One answer in a line.

    Sample Input

    10 5
    1 2 3 4 5 6 7 8 9 10
    Q 4 4
    Q 1 10
    Q 2 4
    C 3 6 3
    Q 2 4
    

    Sample Output

    4
    55
    9
    15
    
    
    
    
    //更新某一段区域的时候,采用延迟标记~~
    代码:
     1 #include "cstdio" //poj 3468 lazy操作
     2 #include "cstring"
     3 #include "iostream"
     4 using namespace std;
     5 
     6 #define N 100005
     7 #define LL long long
     8 
     9 struct node{
    10     int x,y;
    11     LL sum;
    12     LL add;   //记录以当前节点为根节点的树中需要增加的值
    13 }a[3*N];
    14 
    15 void Build(int t,int x,int y)
    16 {
    17     a[t].x = x; 
    18     a[t].y = y;
    19     a[t].sum = a[t].add = 0;
    20     if(a[t].x == a[t].y)  //到了叶子节点
    21     {
    22         scanf("%lld",&a[t].sum);
    23         return ;
    24     }
    25     int mid = (a[t].x + a[t].y)/2;
    26     Build(t<<1,x,mid);
    27     Build(t<<1|1,mid+1,y);
    28     a[t].sum = a[t<<1].sum + a[t<<1|1].sum;
    29 }
    30 
    31 void Push_down(int t)  //将add(增值)向下推一级
    32 {
    33     LL add = a[t].add;
    34     a[t<<1].add += add;
    35     a[t<<1|1].add += add;
    36     a[t<<1].sum += add*(a[t<<1].y-a[t<<1].x+1);
    37     a[t<<1|1].sum += add*(a[t<<1|1].y-a[t<<1|1].x+1);
    38     a[t].add = 0;
    39 }
    40 
    41 LL Query(int t,int x,int y)
    42 {
    43     if(a[t].x==x &&a[t].y==y)
    44         return a[t].sum;
    45     Push_down(t);
    46     int mid = (a[t].x + a[t].y)/2;
    47     if(y<=mid)
    48         return Query(t<<1,x,y);
    49     if(x>mid)
    50         return Query(t<<1|1,x,y);
    51     else
    52         return Query(t<<1,x,mid) + Query(t<<1|1,mid+1,y);
    53 }
    54 
    55 void Add(int t,int x,int y,int k)
    56 {
    57     if(a[t].x==x && a[t].y==y) //不在推到叶子节点,t下的子孙要增加的值存入a[t].add中
    58     {
    59         a[t].add += k;
    60         a[t].sum += (a[t].y-a[t].x+1)*k;
    61         return ;
    62     }
    63     a[t].sum += (y-x+1)*k;
    64     Push_down(t);
    65     int mid = (a[t].x+a[t].y)/2;
    66     if(y<=mid)
    67         Add(t<<1,x,y,k);
    68     else if(x>mid)
    69         Add(t<<1|1,x,y,k);
    70     else
    71     {
    72         Add(t<<1,x,mid,k);
    73         Add(t<<1|1,mid+1,y,k);
    74     }
    75 }
    76 
    77 int main()
    78 {
    79     int n,m;
    80     char ch;
    81     int x,y,k;
    82     scanf("%d %d",&n,&m);
    83     Build(1,1,n);
    84     while(m--)
    85     {
    86         getchar();
    87         scanf("%c %d %d",&ch,&x,&y);
    88         if(ch=='Q')
    89             printf("%lld
    ",Query(1,x,y));
    90         else
    91         {
    92             scanf("%d",&k);
    93             Add(1,x,y,k);
    94         }
    95     }
    96     return 0;
    97 }
     
  • 相关阅读:
    从一个表复制信息到另一个表
    Base64原理 bits 3>4 8bits/byte>6bits/byte
    blockchain
    routing decisions based on paths, network policies, or rulesets configured by a network administrator
    Least_squares 最小二乘法
    How to Write a Spelling Corrector
    prior knowledge
    Law of total probability
    Subset sum problem
    wdateyearmonthweekgategoryamountcoin
  • 原文地址:https://www.cnblogs.com/ruo-yu/p/4411991.html
Copyright © 2020-2023  润新知