• spark写数据入kafka示范代码


    一.pom文件

    <?xml version="1.0" encoding="UTF-8"?>

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>cn.piesat</groupId>
    <artifactId>SparkToKafka</artifactId>
    <version>1.0-SNAPSHOT</version>

    <name>SparkToKafka</name>
    <!-- FIXME change it to the project's website -->
    <url>http://www.example.com</url>

    <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.7</maven.compiler.source>
    <maven.compiler.target>1.7</maven.compiler.target>
    <spark.version>2.1.0</spark.version>
    <hadoop.version>2.7.4</hadoop.version>
    <kafka.version>1.0.0</kafka.version>
    </properties>

    <dependencies>
    <!--spark框架开始-->
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.11</artifactId>
    <version>${spark.version}</version>
    </dependency>
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.11</artifactId>
    <version>${spark.version}</version>
    </dependency>
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-hive_2.11</artifactId>
    <version>${spark.version}</version>
    <exclusions>
    <exclusion>
    <artifactId>commons-logging</artifactId>
    <groupId>commons-logging</groupId>
    </exclusion>
    </exclusions>
    </dependency>
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming_2.11</artifactId>
    <version>${spark.version}</version>
    </dependency>
    <dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-client</artifactId>
    <version>${hadoop.version}</version>
    <exclusions>
    <exclusion>
    <artifactId>commons-logging</artifactId>
    <groupId>commons-logging</groupId>
    </exclusion>
    <exclusion>
    <artifactId>slf4j-log4j12</artifactId>
    <groupId>org.slf4j</groupId>
    </exclusion>
    <exclusion>
    <artifactId>log4j</artifactId>
    <groupId>log4j</groupId>
    </exclusion>
    </exclusions>
    </dependency>
    <dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
    <version>2.1.0</version>
    </dependency>
    <dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka_2.11</artifactId>
    <version>${kafka.version}</version>
    <exclusions>
    <exclusion>
    <artifactId>slf4j-log4j12</artifactId>
    <groupId>org.slf4j</groupId>
    </exclusion>
    <exclusion>
    <artifactId>log4j</artifactId>
    <groupId>log4j</groupId>
    </exclusion>
    </exclusions>
    </dependency>
    <dependency>
    <groupId>org.apache.hbase</groupId>
    <artifactId>hbase</artifactId>
    <version>1.2.6</version>
    </dependency>
    <dependency>
    <groupId>org.apache.hbase</groupId>
    <artifactId>hbase-client</artifactId>
    <version>1.0.2</version>
    </dependency>
    <dependency>
    <groupId>org.apache.hbase</groupId>
    <artifactId>hbase-server</artifactId>
    <version>1.0.2</version>
    </dependency>
    <dependency>
    <groupId>org.apache.hbase</groupId>
    <artifactId>hbase-common</artifactId>
    <version>1.0.2</version>
    </dependency>

    <!--spark框架结束-->
    <dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>fastjson</artifactId>
    <version>1.2.47</version>
    </dependency>
    <dependency>
    <groupId>c3p0</groupId>
    <artifactId>c3p0</artifactId>
    <version>0.9.1.2</version>
    </dependency>
    <dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.44</version>
    </dependency>
    </dependencies>
    <build>
    <plugins>
    <plugin>
    <groupId>net.alchim31.maven</groupId>
    <artifactId>scala-maven-plugin</artifactId>
    <version>3.2.2</version>
    <configuration>
    <recompileMode>incremental</recompileMode>
    </configuration>
    <executions>
    <execution>
    <goals>
    <goal>compile</goal>
    <goal>testCompile</goal>
    </goals>
    </execution>
    </executions>
    </plugin>
    <plugin>
    <groupId>org.apache.maven.plugins</groupId>
    <artifactId>maven-assembly-plugin</artifactId>
    <version>2.4.1</version>

    <configuration>
    <!-- get all project dependencies -->
    <descriptorRefs>
    <descriptorRef>jar-with-dependencies</descriptorRef>
    </descriptorRefs>
    <!-- MainClass in mainfest make a executable jar -->
    <!--<archive>-->
    <!--<manifest>-->
    <!--<addClasspath>true</addClasspath>-->
    <!--     //主函数入口-->
    <!--<mainClass>cn.piesat.spark.SparkStreamingKafka</mainClass>-->
    <!--</manifest>-->
    <!--</archive>-->
    </configuration>

    <executions>
    <execution>
    <id>make-assembly</id>
    <!-- bind to the packaging phase -->
    <phase>package</phase>
    <goals>
    <goal>single</goal>
    </goals>
    </execution>
    </executions>
    </plugin>
    </plugins>
    </build>
    </project>

    二、代码
    连接序列化问题通过懒加载的方式解决,此代码不会因为每次发送数据时重新建立连接。
    1.创建一个KafkaSink类
    ---------------------------------------------------------------------------------------
    package cn.piesat
    import java.util
    import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord, RecordMetadata}

    class KafkaSink[K,V](createProducer:()=>KafkaProducer[K,V]) extends Serializable {
    lazy val producer=createProducer()
    def send(topic:String,key:K,value:V): util.concurrent.Future[RecordMetadata]=
    producer.send(new ProducerRecord[K,V](topic,key,value))
    def send(topic:String,value:V): util.concurrent.Future[RecordMetadata]=
    producer.send(new ProducerRecord[K,V](topic,value))
    }

    object KafkaSink{
    import scala.collection.JavaConversions._
    def apply[K,V](config:Map[String,Object]):KafkaSink[K,V]={
    val createProducerFunc=()=>{
    val producer=new KafkaProducer[K,V](config)
    sys.addShutdownHook{
    producer.close()
    }
    producer
    }
    new KafkaSink(createProducerFunc)
    }
    def apply[K,V](config:java.util.Properties):KafkaSink[K,V]=apply(config.toMap)
    }
    ------------------------------------------------------------------------------


    2.创建一个任务入口类
    --------------------------------------------------------------------------------
    package cn.piesat

    import java.util.Properties

    import org.apache.spark.broadcast.Broadcast
    import org.apache.spark.{SparkConf, SparkContext}

    object SparkToKafka {

    def main(args:Array[String])={
    val conf=new SparkConf().setMaster("local[4]").set("spark.serializer", "org.apache.spark.serializer.KryoSerializer").setAppName("SparkToKafka")
    val sc=new SparkContext(conf)
    val kafkaProducer:Broadcast[KafkaSink[String,String]]={
    val kafkaProducerConfig={
    val p=new Properties()
    p.setProperty("bootstrap.servers","hadoop01:9092")
    p.setProperty("key.serializer","org.apache.kafka.common.serialization.StringSerializer")
    p.setProperty("value.serializer","org.apache.kafka.common.serialization.StringSerializer")
    p
    }
    sc.broadcast(KafkaSink[String,String](kafkaProducerConfig))
    }
    val worldRDD=sc.makeRDD(Array("abc","def"))
    worldRDD.foreachPartition(rdd=>{
    rdd.foreach(record=>{
    kafkaProducer.value.send("lj03",record)
    })
    })

    }
    }
    -----------------------------------------------------------------------------------




  • 相关阅读:
    tab点击切换
    下拉收起
    倒计时
    边框三角形
    jQuery Easing 使用方法及其图解
    网址收藏
    Java遍历Map对象的四种方式
    idea初使用之自动编译
    Mysql 存储引擎中InnoDB与Myisam的主要区别
    spring-boot-devtools在Idea中热部署方法
  • 原文地址:https://www.cnblogs.com/runnerjack/p/10649542.html
Copyright © 2020-2023  润新知