• 基于模糊集理论的一种图像二值化算法


    转自:http://www.cnblogs.com/Imageshop/p/3302850.html

    正文:

         这是篇很古老的论文中的算法,发表与1994年,是清华大学黄良凯(Liang-kai Huang) 所写,因此国外一些论文里和代码里称之为Huang's fuzzy thresholding method。虽然古老也很简单,但是其算法的原理还是值得学习的。

         该论文的原文可从此处下载: Image thresholding by minimizing the measure of fuzziness

         该论文结合了当时处于研究热潮的模糊集理论,提出了一种具有较好效果的图像二值化算法,本文主要是对其进行简单的翻译和注释,并提供了测试代码。

         一、模糊集及其隶属度函数

         首先,我们假定X代表一副大小为M×N的具有L个色阶的灰度图像,而xmn代表图像X中点(m,n)处的像素灰度值,定义μx(xmn)表示该点具有某种属性的隶属度值,也就是说我们定义了一个从图像X映射到[0,1]区间的模糊子集,用专业的模糊集表达,即有:

                                           

           其中0≤μx(xmn)≤1,m=0,1,...M-1,n=0,1,...N-1。对于二值化来说,每个像素对于其所属的类别(前景或背景)都应该有很相近的关系,因此,我们可以这种关系来表示μx(xmn)的值。

           定义h(g)表示图像中具有灰度级g的像素的个数,对于一个给定的阈值t,背景和前景各自色阶值的平均值μ0和μ1可用下式表示:

                                    

                                             

          上述μ0和μ1,可以看成是指定阈值t所对应的前景和背景的目标值,而图像X中某一点和其所述的区域之间的关系,在直觉上应该和该点的色阶值与所属区域的目标值之间的差异相关。因此,对于点(m,n),我们提出如下的隶属度定义函数:

             

      其中C是一个常数,该常数使得0.5≤μx(xmn)≤1。因此,对于一个给定的阈值t,图像中任何一个像素要么属于背景,要么属于前景,因此,每个像素的隶属度不应小于0.5。

         C值在实际的编程中,可以用图像的最大灰度值减去最小灰度值来表达,即 C=gmax-gmin;

      二、模糊度的度量及取阈值的原则

         模糊度表示了一个模糊集的模糊程度,有好几种度量方式已经被提及了,本文仅仅使用了香农熵函数来度量模糊度。

         基于香农熵函数,一个模糊集A的熵定义为:

           

          其中香农函数:

          

          扩展到2维的图像,图像X的熵可以表达为:

         

      因为灰度图像至多只有L个色阶,因此使用直方图式(7)可进一步写成:

             

        可以证明式(6)在区间[0,0.5]之间是单调递增而在[0.5,1]之间是单调递减的,并且E(X)具有以下属性:

         (1)0≤E(X)≤1 ;

          (2)如果μx(xmn)=0或者μx(xmn)=1时,E(X)具有最小值0,在本文中μx(xmn)只可能为1,此时分类具有最好的明确性。

         (3)当μx(xmn)=0.5,E(X)获得最大值1,此时的分类具有最大的不明确性。

         那么对于图像X,我们确定最好的阈值t的原则就是:对于所有的可能的阈值t,取香农熵值最小时的那个t为最终的分割阈值。

         三、编程中的技巧

         有了上述原理,其实编程也是件很容易的事情了,你可以按照你的想法去做,不过作者论文中的阐述会让代码写起来更清晰、更有效。

         首先,为了表达方便,我们定义如下一些表达式:

            

         根据上述表达式,可以知道S(L-1)及W(L-1)对于一副图像来说是个常量,其中S(L-1)明显就是像素的总个数。

      我们的算法步骤如下:

         (1)、计算S(L-1)、W(L-1),设置初始阈值t=gmin,令S(t-1)=0、W(t-1)=0;

          (2)、 计算下面算式:

                    

          稍微有点数学基础的人都应该能看懂上述算式的推导原理。

            根据式(2)和式(3),可以知道背景和前景的区域的平均灰度值为:

              

       上式中int表示取整操作。

           (3)根据式(4)及式(11)计算图像的模糊度;

           (4)令t=t+1,然后重新执行步骤2,直到t=gmax-1;

            (5)找到整个过程中的最小模糊度值对应的阈值t,并作为最佳的分割阈值。

         为了稍微加快点速度,上述式4中的计算可以在步骤1中用一查找表实现。

        四、参考代码:

    public static int GetHuangFuzzyThreshold(int[] HistGram)
    {
        int X, Y;
        int First, Last;
        int Threshold = -1;
        double BestEntropy = Double.MaxValue, Entropy;
        //   找到第一个和最后一个非0的色阶值
        for (First = 0; First < HistGram.Length && HistGram[First] == 0; First++) ;
        for (Last = HistGram.Length - 1; Last > First && HistGram[Last] == 0; Last--) ;
        if (First == Last) return First;                // 图像中只有一个颜色
        if (First + 1 == Last) return First;            // 图像中只有二个颜色
    
        // 计算累计直方图以及对应的带权重的累计直方图
        int[] S = new int[Last + 1];
        int[] W = new int[Last + 1];            // 对于特大图,此数组的保存数据可能会超出int的表示范围,可以考虑用long类型来代替
        S[0] = HistGram[0];
        for (Y = First > 1 ? First : 1; Y <= Last; Y++)
        {
            S[Y] = S[Y - 1] + HistGram[Y];
            W[Y] = W[Y - 1] + Y * HistGram[Y];
        }
    
        // 建立公式(4)及(6)所用的查找表
        double[] Smu = new double[Last + 1 - First];
        for (Y = 1; Y < Smu.Length; Y++)
        {
            double mu = 1 / (1 + (double)Y / (Last - First));               // 公式(4)
            Smu[Y] = -mu * Math.Log(mu) - (1 - mu) * Math.Log(1 - mu);      // 公式(6)
        }
    
        // 迭代计算最佳阈值
        for (Y = First; Y <= Last; Y++)
        {
            Entropy = 0;
            int mu = (int)Math.Round((double)W[Y] / S[Y]);             // 公式17
            for (X = First; X <= Y; X++)
                Entropy += Smu[Math.Abs(X - mu)] * HistGram[X];
            mu = (int)Math.Round((double)(W[Last] - W[Y]) / (S[Last] - S[Y]));  // 公式18
            for (X = Y + 1; X <= Last; X++)
                Entropy += Smu[Math.Abs(X - mu)] * HistGram[X];       // 公式8
            if (BestEntropy > Entropy)
            {
                BestEntropy = Entropy;      // 取最小熵处为最佳阈值
                Threshold = Y;
            }
        }
        return Threshold;
    }

       代码其实还是很简单的。

       五、效果:

     针对一些图像,我们做了如下测试:

        

                原图                                二值图,阈值=175

       上图使用OSTU等经典算法都无法获得上图的理想效果。

           

                   原图                                   二值图,阈值=67

        上图和其他一些二值算法的效果也是非常类似的。

     

     

    *****************************基本上我不提供源代码,但是我会尽量用文字把对应的算法描述清楚或提供参考文档*********************

    *************************************因为靠自己的努力和实践写出来的效果才真正是自己的东西,人一定要靠自己****************************

    *********************************作者: laviewpbt   时间: 2013.9.5    联系QQ:  33184777  转载请保留本行信息************************

  • 相关阅读:
    代理信息[Python] 实现网络爬虫
    线程希望IOS开发(67)之简单的线程方法
    生产环境紧急修改表存储引擎:MyISAM 为 InnoDB步骤
    Mysql优化SQL语句的一般步骤
    window 2003 实现多用户远程登录
    XSS的知识普及和预防办法
    免积分下载CSDN软件和新浪资料
    mysql开启慢查询方法
    在线JS/CSS/HTML压缩
    我们项目中需要准备的技术
  • 原文地址:https://www.cnblogs.com/ruan875417/p/4495590.html
Copyright © 2020-2023  润新知