• 气体动理论提纲


    引论


    • 热学

      研究物质热性质和热现象规律及应用的学科

    • 热力学系统

      由大量微观粒子(分子、原子等)所组成的宏观物体

    • 外界

      系统以外的物体

    • 宏观理论:热力学

    • 微观理论:统计物理学(包含气体动理论)

    第9章 气体动理论


    • 气体动理论:研究气体热现象的微观理论

    • 阿伏伽德罗常量:

      [N_A=6.022 imes 10^{23}mol^{-1} ]

    $9.1 状态参量 平衡态 准静止过程

    9.1.1 气体状态参量

    状态参量

    气体的状态参量:体积、压强、温度三个物理量

    • 气体微观量:每个分子的质量、速度、动量、能量……
    • 气体宏观量:描写气体宏观性质的状态参量
    1.体积
    • 气体分子活动所能达到的空间
    • 符号:V 单位:m³(立方米)
    2.压强
    • 气体作用于容器壁单位面积上指向器壁的垂直作用力
    • 符号:p 单位:Pa(帕斯卡)
    3.温度
    • 表征系统热平衡的宏观性质的物理量

      热平衡:假设两个系统通过导热壁相互接触后达到一个共同的平衡态,称这两个系统处于热平衡

      热力学第零定律:在不受外界影响下,如果两个系统分别与处于确定状态的第三个系统达到热平衡,则这两个系统彼此也将处于热平衡

    • 热力学温标(开尔文温标) 符号:T 单位:K(开尔文)

    • 摄氏温标 符号:t 单位 : ℃(摄氏度)

      温标:温度的数值表示法

    • 换算关系:

      [t/℃=T/K-273.15 ]

    9.1.2 平衡态

    平衡态与非平衡态
    • 平衡态:这种在不受外界影响的条件下,无论初始状态如何,系统的宏观性质在经充分长时间后不再发生变化的状态
    • 非平衡态:不满足上述条件的状态

    热力学中的平衡态实质上是一种热平衡态

    9.1.3 准静态过程

    热力学过程

    热力学系统受外界影响发生质量或能量交换时状态变化的过程

    准静态过程

    在过程中的任意时刻(或过程中的每一步)系统的状态都无限接近于平衡态的过程

    非静态过程:实际状态变化过程是连续的,中间任一时刻没有确定的状态值的过程

    过程曲线

    准静态过程变化时可以用相空间的一条曲线表示

    $9.2 理想气体的物态方程

    理想气体

    严格遵守波意耳定律的气体

    波意耳定律

    一定质量的气体,在一定温度下,其压强p和体积V的乘积是一个常量

    [pV=C ]

    推广:

    [pVvarpropto T ]

    标准温度定点

    水的三相点温度规定为

    [T_3=273.16K ]

    理想气体物态方程

    [pV=frac{m}{M}RT\qquad qquad quad【 (摩尔气体常量)R=frac{p_3V_{3m}}{T_3}qquadqquadqquad \V_{3m}表示气体在水三相点温度下的摩尔体积】 ]

    $9.3 麦克斯韦速率分布

    9.3.1 麦克斯韦速率分布率

    速率分布函数

    速率在v附近单位速率区间内的分子数占总分子数的百分比

    [f(v)=frac{dN}{N_0dv} ]

    麦克斯韦速率分布函数

    只适用于平衡态理想气体

    [f(v)=4pileft(frac{m_0}{2pi kT} ight)^frac{3}{2}e^{-frac{mu v^2}{2kT}}v^2 ]

    玻尔兹曼常量

    [k=frac{R}{N_A}=1.38 imes 10^{-23}J·K^{-1} ]

    归一化条件

    [int^infty_0f(v)dv=1 ]

    9.3.2 三个统计速率

    [特点:quad都与sqrt{T}成正比,与sqrt{M}成反比,他们之间的关系为v_p<ar{v}<sqrt{overline{v^2}} ]

    1.最概然速率

    讨论分子速率分布时使用

    [frac{d}{dv}f(v)=0\得qquad v_p=sqrt{frac{2kT}{m_0}}=sqrt{frac{2RT}{M}}approx1.41sqrt{frac{RT}{M}} ]

    2.平均速率

    讨论分子碰撞频率和平均自由程时使用

    [ar{v}=int^infty_0vf(v)dv\得qquad ar{v}=sqrt{frac{8kT}{pi m_0}}=sqrt{frac{8RT}{pi M}}approx1.60sqrt{frac{RT}{M}} ]

    3.方均根速率

    讨论分子平均动能时使用

    [overline{v^2}=int^infty_0v^2f(v)dv\得qquad sqrt{overline{v^2}}=sqrt{frac{3kT}{m_0}}=sqrt{frac{3RT}{M}}approx1.73sqrt{frac{RT}{M}} ]

    $9.4 玻尔兹曼分布

    9.4.1 玻尔兹曼分布率

    玻尔兹曼分布率(玻尔兹曼按能量分布定律)

    [dN=n_0left(frac{m_0}{2pi kT} ight)^{frac{3}{2}}e^{-frac{varepsilon_k+varepsilon_p}{kT}}dv_xdv_ydv_zdxdydz ]

    分子数按势能的分布率

    分布在区间 x~x+dx;y~y+dy;z~z+dz 内单位体积的分子数

    [n=n_0e^{-frac{varepsilon_p}{kT}} ]

    9.4.2 重力场中微粒按高度的分布

    等温气压公式

    [p=p_0e^{-frac{m_0gz}{kT}}=p_0e^{-frac{Mgz}{RT}}\【高度:quad z=frac{RT}{Mg}lnfrac{p_0}{p}】 ]

    $9.5 理想气体的压强

    9.5.1 理想气体的微观模型

    假设的微观模型
    1. 分子本身线度与分子间的距离相比较,可以忽略不计
    2. 除了分子碰撞一瞬外,可以认为分子间及分子与容器壁之间均无相互作用
    3. 气体分子在运动过程中遵守经典力学规律,假设碰撞是完全弹性的

    9.5.2 平衡状态气体的统计假设

    分子混沌性假设
    1. 忽略重力时,平衡态气体分子均匀分布于容器中
    2. 在平衡态时,沿各方向运动的分子数目是相等的

    9.5.3 理想气体压强公式及统计意义

    理想气体压强公式

    [p=frac{2}{3}nleft(frac{1}{2}m_0overline{v^2} ight)=frac{2}{3}noverline{varepsilon}_{kt} ]

    气体分子的平均平动动能

    [overline{varepsilon}_{kt}=frac{1}{2}m_0overline{v^2} ]

    $9.6 温度的微观本质 理想气体物态方程的推证

    9.6.1 温度的微观解释

    温度定义

    大量分子热运动的平动动能的统计平均值:

    [overline{varepsilon}_{kt}=frac{3}{2}kT ]

    温度:是大量分子热运动的平动动能的统计平均值的量度

    $9.7 能量均分定理 理想气体的内能

    9.7.1 自由度

    自由度数定义

    确定一个物体在空间的位置所需要的独立坐标数目

    刚性分子的自由度数
    分子种类 平动自由度 t 转动自由度 r 总自由度 i
    单原子分子 3 0 3
    刚性双原子分子 3 2 5
    刚性多原子分子 3 3 6

    9.7.2 能量均分定理

    自由度均分定理

    在温度为T的平衡态下,物质分子的每一个自由度都具有相同的平均动能,其大小都等于1/2*kT。如果分子的自由度数为i,有分子平均动能为

    [overline{varepsilon}_{k}=frac{i}{2}kT ]

    9.7.3 理想气体的内能

    内能
    • 气体内能:系统中气体分子的动能和分子间相互作用势能的总和。

    • 刚性分子气体内能:即所有分子的动能之和——

      [E=frac{m}{M}frac{i}{2}RT ]

    • 理想气体的另一个定义:内能只是温度的单值函数的气体。

    $9.8 真实气体

    9.8.1 真实气体的等温曲线

    三个阶段
    1. 反比曲线
    2. 临界汽液共存态——水平线(须有一定温度要求)
    3. 液态变化曲线

    9.8.2 范德瓦尔斯方程

    模型修正
    1. 体积修正:来自分子自身体积

      [V_mRightarrow V_m-b\b=4N_A·frac{4}{3}pi left(frac{d}{2} ight)^3 hickapprox10^{-6}m^3 ]

    2. 压强修正:来自内压强

      [p=frac{RT}{V_m}Rightarrow p=frac{RT}{V_m-b}-p_i\p_i=frac{a}{V^2_m}quad【a决定于气体性质】 ]

    范德瓦尔斯方程
    • 1mol真实气体的方程:

      [left(p+frac{a}{V^2_m} ight)(V_m-b)=RT ]

    • 质量为m的真实气体的方程:

      [left(p+frac{m^2}{M^2}frac{a}{V^2_m} ight)(V_m-frac{m^2}{M^2}b)=frac{m^2}{M^2}RT ]

    模型缺点

    模型低温不符合,高温符合较好

    $9.9 气体分子的平均自由程和平均碰撞频率

    平均碰撞频率

    定义:每个分子在单位时间内所受到的平均碰撞次数

    公式:

    [egin{equation} egin{aligned} overline z&=frac{nsigma overline uDelta t}{Delta t}=nsigma overline u=sqrt{2}nsigma overline v\&=sqrt{2}pi d^2overline vn\【其中sigma&叫做分子的碰撞截面,sigma=pi d^2】 end{aligned} end{equation} ]

    平均自由程

    定义:分子在连续两次碰撞之间所通过的自由路程的平均值

    公式:

    [egin{equation} egin{aligned} overlinelambda&=frac{overline vDelta t}{overline zDelta t}=frac{overline v}{overline z}\&=frac{1}{sqrt{2}pi d^2n}quad【一般情况】\&=frac{kT}{sqrt{2}pi d^2p}quad【理想气体情况】 end{aligned} end{equation} ]

    $9.10 气体输运过程

    9.10.1 黏性现象(内摩擦)

    速度梯度

    各层流流速不同,(速度大会产生湍流)

    [{left(frac{du}{dz} ight)}_{z_0} ]

    牛顿黏性定律

    [dF=eta{left(frac{du}{dz} ight)}_{z_0}dS ]

    粘度

    又称内摩擦系数,单位:Pa·s

    [eta=frac{1}{3} ho overline voverlinelambda ]

    9.10.2 热传导

    温度梯度

    [{left(frac{dT}{dz} ight)}_{z_0} ]

    傅里叶定律

    [dQ=-kappa{left(frac{dT}{dz} ight)}_{z_0}dS·dt ]

    热导率

    又称导热系数,单位: W/(m·K)

    [kappa=frac{1}{3}overline voverlinelambda c_V ho ]

    9.10.3 扩散现象

    密度梯度

    [{left(frac{d ho}{dz} ight)}_{z_0} ]

    斐克定律

    [dm=-D{left(frac{d ho}{dz} ight)}_{z_0}dS·dt ]

    扩散系数

    [eta=frac{1}{3}overline voverlinelambda ]

    9.10.4 低压下的热传导

    因为低压下气体可以视为理想气体,所以有

    [kappa=frac{1}{3}sqrt{frac{4km_0}{pi}}c_V frac{sqrt{T}}{pi d^2} ]

    应用:杜瓦瓶

  • 相关阅读:
    设计模式-单件模式 实现
    设计模式-观察者模式 实现
    设计模式-策略模式 实现
    笔记- 设计模式:设计原则
    EventBus 发布/订阅 机制的 java 实现
    webService 客户端 以wsimport方式生成对应java文件
    【安装mysql】windows安装压缩版mysql5.7.15
    eclipse插件开发入门
    Java程序开发.邱加永2.1节
    Mysql常用表操作 | 单表查询
  • 原文地址:https://www.cnblogs.com/rsmx/p/11902028.html
Copyright © 2020-2023  润新知