• 回归算法、分类算法的损失函数的图示


    import matplotlib.pyplot as plt
    import tensorflow as tf
    
    sess = tf.Session()
    x_vals = tf.linspace(-1., 1., 500)
    target = tf.constant(0.)
    
    l2_y_vals = tf.square(target - x_vals)
    l2_y_out = sess.run(l2_y_vals)
    
    l1_y_vals = tf.abs(target - x_vals)
    l1_y_out = sess.run(l1_y_vals)
    
    delta1 = tf.constant(0.25)
    phuber1_y_als = tf.multiply(tf.square(delta1), tf.sqrt(1. + tf.square((target - x_vals) / delta1)) - 1.)
    phuber1_y_out = sess.run(phuber1_y_als)
    
    delta2 = tf.constant(5.)
    phuber2_y_als = tf.multiply(tf.square(delta2), tf.sqrt(1. + tf.square((target - x_vals) / delta2)) - 1.)
    phuber2_y_out = sess.run(phuber2_y_als)
    
    # x_array = sess.run(x_vals)
    # plt.plot(x_array, l2_y_out, 'b-', label='L2 Loss')
    # plt.plot(x_array, l1_y_out, 'r--', label='L1 Loss')
    # plt.plot(x_array, phuber1_y_out, 'k--', label='P-Huber Loss(0.25)')
    # plt.plot(x_array, phuber2_y_out, 'g:', label='P-Huber Loss(5.0)')
    # plt.ylim(-0.2, 0.4)
    # plt.legend(loc='lower right', prop={'size': 11})
    # plt.show()
    
    x_vals = tf.linspace(-3., 5., 500)
    target = tf.constant(1.)
    targets = tf.fill([500, ], 1.)
    
    hinge_y_vals = tf.maximum(0., 1. - tf.multiply(target, x_vals))
    hinge_y_out = sess.run(hinge_y_vals)
    
    # [i for i  in xentropy_y_out if not sess.run(tf.is_nan(i))]
    xentropy_y_vals = -tf.multiply(target, tf.log(x_vals)) - tf.multiply((1. - target), tf.log(1. - x_vals))
    xentropy_y_out = sess.run(xentropy_y_vals)
    not_nan = [i for i in xentropy_y_out if not sess.run(tf.is_nan(i))]
    
    # logits and targets must have the same type and shape.
    # ValueError: Only call `sigmoid_cross_entropy_with_logits` with named arguments (labels=..., logits=..., ...)
    xentropy_sigmoid_y_vals = tf.nn.sigmoid_cross_entropy_with_logits(labels=x_vals, logits=targets)
    xentropy_sigmoid_y_out = sess.run(xentropy_sigmoid_y_vals)
    
    weight = tf.constant(0.5)
    xentropy_weigthed_y_vals = tf.nn.weighted_cross_entropy_with_logits(x_vals, targets, weight)
    xentropy_weigthed_y_out = sess.run(xentropy_weigthed_y_vals)
    
    x_array = sess.run(x_vals)
    plt.plot(x_array, hinge_y_out, 'b-', label='Hinge Loss')
    plt.plot(x_array, xentropy_y_out, 'r--', label='Cross Entropy Loss')
    plt.plot(x_array, xentropy_sigmoid_y_out, 'k--', label='Cross Entropy Sigmoid Loss')
    plt.plot(x_array, xentropy_weigthed_y_out, 'g:', label='Weighted Cross Entropy Sigmoid Loss (*0.5)')
    plt.ylim(-1.5, 3)
    plt.legend(loc='lower right', prop={'size': 11})
    plt.show()
    
    # unscaled_logits = tf.constant([1., -3., 10.])
    # target_dist = tf.constant([0.1, 0.02, 0.88])
    # softmax_xentropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=unscaled_logits, logits=target_dist)
    # print(sess.run(softmax_xentropy))
    # softmax_xentropy_out = sess.run(softmax_xentropy)
    #
    # unscaled_logits = tf.constant([1., -3., 10.])
    # sparse_target_dist = tf.constant([2])
    # sparse_xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=unscaled_logits, logits=sparse_target_dist)
    # print(sess.run(sparse_xentropy))
    # sparse_xentropy_out = sess.run(sparse_xentropy)
    dd = 9
    

      

  • 相关阅读:
    2021.9.15 单一职责原则
    2021.9.21 Hive元数据
    2021.9.22 抽象工厂方法模式(人与肤色)
    2021.9.25 Hive安装
    1021每日博客
    1027每日博客
    1018每日博客
    1028每日博客
    1026每日博客
    1025每日博客
  • 原文地址:https://www.cnblogs.com/rsapaper/p/9017741.html
Copyright © 2020-2023  润新知