• POJ 2778 (AC自动机+矩阵乘法)


    POJ 2778 DNA Sequence

    Problem : 给m个只含有(A,G,C,T)的模式串(m <= 10, len <=10), 询问所有长度为n的只含有(A,G,C,T)的串中有多少个不含有模式串的串。(n<=2000000000)
    Solution :首先对所有模式串建立AC自动机。然后dp[i][j]表示长度为i,走到AC自动机的节点j这样的字符串满足条件的个数有多少,用AC自动机的边写出状态转移方程然后用矩阵快速幂加速运算。

    #include <iostream>
    #include <string>
    #include <queue>
    
    using namespace std;
    
    const int N = 208;
    const int mo = 100000;
    
    int id[128];
    
    struct Matrix
    {
    	int n;
    	int a[N][N];
    	Matrix(int n_, int p)
    	{
    		n = n_;
    		for (int i = 0; i < n; ++i)
    			for (int j = 0; j < n; ++j)
    			{
    				a[i][j] = 0;
    				if (i == j) a[i][j] = p;
    			}
    	}
    	friend Matrix operator *(Matrix A, Matrix B)
    	{
    		Matrix C(A.n, 0);
    		for (int i = 0; i < A.n; ++i)
    			for (int j = 0; j < A.n; ++j)
    				for (int k = 0; k < A.n; k++)
    					C.a[i][j] = (C.a[i][j] + 1ll * A.a[i][k] * B.a[k][j] % mo) % mo; 
    		return C;
    	}
    	void print()
    	{
    		for (int i = 0; i < n; ++i)
    		{
    			for (int j = 0; j < n; ++j) cout << a[i][j] << " ";
    			cout << endl;
    		}
    	}
    };
    
    struct AC_Automan
    {
    	int next[N][4];
    	int fail[N];
    	int cnt[N];
    	int root, tot;
    	
    	int newnode()
    	{
    		for (int i = 0; i <= 3; ++i) next[tot][i] = -1;
    		fail[tot] = cnt[tot] = -1;
    		return tot++;
    	}
    	void clear()
    	{
    		tot = 0;
    		root = newnode();
    	}
    	void insert(const string &s)
    	{
    		int p = root;
    		for (int i = 0, len = s.length(); i < len; ++i)
    		{
    			if (next[p][id[s[i]]] == -1) next[p][id[s[i]]] = newnode();
    			p = next[p][id[s[i]]];
    		}
    		cnt[p] = 1;
    	}
    	void build()
    	{
    		queue <int> Q;
    		Q.push(root);
    		while (!Q.empty())
    		{
    			int p = Q.front(); Q.pop();
    			for (int i = 0; i < 4; ++i)
    			{
    				if (~next[p][i])
    				{
    					if (p == root) fail[next[p][i]] = root; 
    					else fail[next[p][i]] = next[fail[p]][i];
    					Q.push(next[p][i]);
    				}		
    				else
    				{
    					if (p == root) next[p][i] = root;
    					else next[p][i] = next[fail[p]][i];
    				}
    			}
    		}
    	}
    	Matrix power(Matrix A, int y)
    	{
    		Matrix B(tot, 1);
    		while (y)
    		{
    			if (y & 1) B = B * A;
    			A = A * A;
    			y >>= 1;
    		}
    		return B;
    	}
    
    	void solve(int num)
    	{
    		Matrix A(tot, 0);
    		for (int i = 0; i <= tot; ++i)
    		{
    			for (int j = 0; j < 4; ++j)
    			{
    				int flag = 1;
    				for (int temp = next[i][j]; temp != root; temp = fail[temp])
    				{
    					if (~cnt[temp]) flag = 0;
    				}
    				A.a[i][next[i][j]] += flag;
    			}
    		}
    		A = power(A, num);
    		int ans = 0;
    		for (int i = 0; i < tot; ++i) ans = (ans + A.a[0][i]) % mo;
    		cout << ans << endl;
    	}
    }ac;
    
    
    
    int main()
    {
    	cin.sync_with_stdio(0);
    	id['A'] = 0; id['G'] = 1; id['C'] = 2; id['T'] = 3;
    	int m, n;
    	while (cin >> m >> n)
    	{
    		ac.clear();
    		for (int i = 1; i <= m; ++i)
    		{
    			string s; cin >> s;
    			ac.insert(s);
    		}
    		ac.build();
    		ac.solve(n);
    	}
    }
    
    
  • 相关阅读:
    调试
    webpack output的path publicPath
    CSS实现单行、多行文本溢出显示省略号
    docker安装mysql
    构建docker镜像
    Tensorflow博文列表
    ML理论知识博文列表
    Python博文列表
    Opencv博文收藏列表
    Centos文章列表
  • 原文地址:https://www.cnblogs.com/rpSebastian/p/7193485.html
Copyright © 2020-2023  润新知