• YOLO


    https://blog.csdn.net/thm225679/article/details/79407619  实践

    ---》

    argparse是python用于解析命令行参数和选项的标准模块,用于代替已经过时的optparse模块。argparse模块的作用是用于解析命令行参数,例如python parseTest.py input.txt output.txt --user=name --port=8080。

    1:import argparse

    2:parser = argparse.ArgumentParser()

    3:parser.add_argument()

    4:parser.parse_args()

    解释:首先导入该模块;然后创建一个解析对象;然后向该对象中添加你要关注的命令行参数和选项,每一个add_argument方法对应一个你要关注的参数或选项;最后调用parse_args()方法进行解析;解析成功之后即可使用

    用tf.train.Saver() 创建一个Saver 来管理模型中的所有变量。~https://blog.csdn.net/qiqiaiairen/article/details/53184216

    tf.train.Saver.restore(sess, save_path)
    恢复之前保存的变量,这个方法运行构造器为恢复变量所添加的操作。它需要启动图的Session。恢复的变量不需要经过初始化,恢复作为初始化的一种方法。save_path 参数是之前调用save() 的返回值,或调用 latest_checkpoint() 的返回值。
     
    使用arrange生成连续元素' print numpy.arange(6) # [0,1,2,3,4,5,] 开区间 print numpy.arange(0,6,2)
     
    transpose转置:https://www.cnblogs.com/sunshinewang/p/6893503.html
    cv2.rectangle(image, 左下角坐标, 右上角坐标, color) 
     
    np.multiply数组/矩阵相乘:
    https://blog.csdn.net/zenghaitao0128/article/details/78715140
     

    对于二维数组b2,nonzero(b2)所得到的是一个长度为2的元组。它的第0个元素是数组a中值不为0的元素的第0轴的下标,第1个元素则是第1轴的下标,因此从下面的结果可知b2[0,0]、b[0,2]和b2[1,0]的值不为0:

    >>> b2 = np.array([[True, False, True], [True, False, False]])
    >>> np.nonzero(b2)
        (array([0, 0, 1]), array([0, 2, 0]))
     
    计时:
    from utils.timer import Timerdetect_timer = Timer()
    detect_timer.tic()
    detect_timer.toc()
    print('Average detecting time: {:.3f}s'.format(
    detect_timer.average_time))

     

    https://blog.csdn.net/hrsstudy/article/details/70305791  论文讲解

    解决方案如下:
    更重视8维的坐标预测,给这些损失前面赋予更大的loss weight, 记为 λcoord ,在pascal VOC训练中取5。(上图蓝色框)
    对没有object的bbox的confidence loss,赋予小的loss weight,记为 λnoobj ,在pascal VOC训练中取0.5。(上图橙色框)
    有object的bbox的confidence loss (上图红色框) 和类别的loss (上图紫色框)的loss weight正常取1。

    对不同大小的bbox预测中,相比于大bbox预测偏一点,小box预测偏相同的尺寸对IOU的影响更大。而sum-square error loss中对同样的偏移loss是一样。
    为了缓和这个问题,作者用了一个巧妙的办法,就是将box的width和height取平方根代替原本的height和width。 如下图:small bbox的横轴值较小,发生偏移时,反应到y轴上的loss(下图绿色)比big box(下图红色)要大。

  • 相关阅读:
    JavaScript学习——使用JS实现首页轮播图效果
    JavaScript学习——使用JS完成注册页面表单校验
    JavaScript基础
    HTML&CSS——使用DIV和CSS完成网站首页重构
    HTML&CSS——网站注册页面
    java ------------ 集合(四) Collections类
    Java ---------- 集合(三) Map接口
    java ---------- 集合(二) Set 接口和Iterator 接口
    Java ---------- 集合
    idea -------- 常用快捷键
  • 原文地址:https://www.cnblogs.com/rosyYY/p/8798651.html
Copyright © 2020-2023  润新知