• leetcode-hard-ListNode-Copy List with Random Pointer-NO


    mycode

    报错:Node with val 1 was not copied but a reference to the original one.

    其实我并没有弄懂对于ListNode而言咋样才叫做深拷贝了

    """
    # Definition for a Node.
    class Node(object):
        def __init__(self, val, next, random):
            self.val = val
            self.next = next
            self.random = random
    """
    class Solution(object):
        def copyRandomList(self, head):
            """
            :type head: Node
            :rtype: Node
            """
            if not head : return None
            dummy = p = ListNode(-1)
            while head:
                p.next = head
                p = p.next
                head = head.next
            return dummy.next

    这道链表的深度拷贝题的难点就在于如何处理随机指针的问题,由于每一个节点都有一个随机指针,这个指针可以为空,也可以指向链表的任意一个节点,如果我们在每生成一个新节点给其随机指针赋值时,都要去遍历原链表的话,OJ 上肯定会超时,所以我们可以考虑用 HashMap 来缩短查找时间,第一遍遍历生成所有新节点时同时建立一个原节点和新节点的 HashMap,第二遍给随机指针赋值时,查找时间是常数级。

    参考

    https://www.cnblogs.com/zuoyuan/p/3745126.html

    1、先不考虑random的问题,在原链表上构建copy

    2、在copy链表上,利用now.next.random 也需要等于now.random.next实现随即指针的拷贝

    3、两个链表分离

    """
    # Definition for a Node.
    class Node(object):
        def __init__(self, val, next, random):
            self.val = val
            self.next = next
            self.random = random
    """
    class Solution(object):
        def copyRandomList(self, head):
            """
            :type head: Node
            :rtype: Node
            """
            if head == None: return None
            tmp = head
            while tmp:
                newNode = Node(tmp.val,None,None)
                newNode.next = tmp.next
                tmp.next = newNode
                tmp = tmp.next.next
            tmp = head
            while tmp:
                if tmp.random:
                    tmp.next.random = tmp.random.next
                tmp = tmp.next.next
            newhead = head.next
            pold = head
            pnew = newhead
            while pnew.next:
                pold.next = pnew.next
                pold = pold.next
                pnew.next = pold.next
                pnew = pnew.next
            pold.next = None
            pnew.next = None
            return newhead
  • 相关阅读:
    数据分析业务知识
    Scipy
    python数据结构与算法(1)---时间复杂度
    RNN循环神经网络
    利用卷积神经网络处理cifar图像分类
    CNN卷积神经网络的构建
    卷积神经网络(简单)
    Tensorflow-逻辑斯蒂回归
    Tensorflow
    聚类-衡量指标
  • 原文地址:https://www.cnblogs.com/rosyYY/p/11050372.html
Copyright © 2020-2023  润新知