• [源码解析] Flink的Slot究竟是什么?(2)


    [源码解析] Flink 的slot究竟是什么?(2)

    0x00 摘要

    Flink的Slot概念大家应该都听说过,但是可能很多朋友还不甚了解其中细节,比如具体Slot究竟代表什么?在代码中如何实现?Slot在生成执行图、调度、分配资源、部署、执行阶段分别起到什么作用?本文和上文将带领大家一起分析源码,为你揭开Slot背后的机理。

    0x01 前文回顾

    书接上回 [源码解析] Flink 的slot究竟是什么?(1)。前文中我们已经从系统架构和数据结构角度来分析了Slot,本文我们将从业务流程角度来分析Slot。我们重新放出系统架构图

    和数据结构逻辑关系图

    下面我们从几个流程入手一一分析。

    0x02 注册/更新Slot

    有两个途径会注册Slot/更新Slot状态。

    • 当TaskExecutor注册成功之后会和RM交互进行注册时,一并注册Slot;
    • 定时心跳时,会在心跳payload中附加Slot状态信息;

    2.1 TaskExecutor注册成功

    当TaskExecutor注册成功之后会和RM交互进行注册。会通过如下的代码调用路径来向ResourceManager(SlotManagerImpl)注册Slot。SlotManagerImpl 在获取消息之后,会更新Slot状态,如果此时已经有如果有pendingSlotRequest,就直接分配,否则就更新freeSlots变量。

    • TaskExecutor#establishResourceManagerConnection;

    • TaskSlotTableImpl#createSlotReport;建立 report

      • 这时候的 report如下:

        slotReport = {SlotReport@9633} 
        
          0 = {SlotStatus@8969} "SlotStatus{slotID=40d390ec-7d52-4f34-af86-d06bb515cc48_0, resourceProfile=ResourceProfile{managedMemory=64.000mb (67108864 bytes), networkMemory=32.000mb (33554432 bytes)}, allocationID=null, jobID=null}"
           slotID = {SlotID@8629} "40d390ec-7d52-4f34-af86-d06bb515cc48_0"
           resourceProfile = {ResourceProfile@4194} "ResourceProfile{managedMemory=64.000mb (67108864 bytes), networkMemory=32.000mb (33554432 bytes)}"
           allocationID = null
           jobID = null
            
          1 = {SlotStatus@9638} "SlotStatus{slotID=40d390ec-7d52-4f34-af86-d06bb515cc48_1, resourceProfile=ResourceProfile{managedMemory=64.000mb (67108864 bytes), networkMemory=32.000mb (33554432 bytes)}, allocationID=null, jobID=null}"
           slotID = {SlotID@9643} "40d390ec-7d52-4f34-af86-d06bb515cc48_1"
           resourceProfile = {ResourceProfile@4194} "ResourceProfile{managedMemory=64.000mb (67108864 bytes), networkMemory=32.000mb (33554432 bytes)}"
           allocationID = null
           jobID = null
        
    • ResourceManager#sendSlotReport;通过RPC(resourceManagerGateway.sendSlotReport)调用到RM

    • SlotManagerImpl#registerTaskManager;把TaskManager注册到SlotManager

    • SlotManagerImpl#registerSlot;

    • SlotManagerImpl#createAndRegisterTaskManagerSlot;生成注册了TaskManagerSlot

      • 这时候代码 & 变量如下,我们可以看到,就是把TM的Slot信息注册到SlotManager中

        private TaskManagerSlot createAndRegisterTaskManagerSlot(SlotID slotId, ResourceProfile resourceProfile, TaskExecutorConnection taskManagerConnection) {
           final TaskManagerSlot slot = new TaskManagerSlot(
                                            slotId, resourceProfile, taskManagerConnection);
           slots.put(slotId, slot);
           return slot;
        }
        
        slot = {TaskManagerSlot@13322} 
         slotId = {SlotID@8629} "40d390ec-7d52-4f34-af86-d06bb515cc48_0"
         resourceProfile = {ResourceProfile@4194} 
          cpuCores = {CPUResource@11616} "Resource(CPU: 89884656743115785...0)"
          taskHeapMemory = {MemorySize@11617} "4611686018427387903 bytes"
          taskOffHeapMemory = {MemorySize@11618} "4611686018427387903 bytes"
          managedMemory = {MemorySize@11619} "64 mb"
          networkMemory = {MemorySize@11620} "32 mb"
          extendedResources = {HashMap@11621}  size = 0
         taskManagerConnection = {WorkerRegistration@11121} 
         allocationId = null
         jobId = null
         assignedSlotRequest = null
         state = {TaskManagerSlot$State@13328} "FREE"
        
    • SlotManagerImpl#updateSlot

    • SlotManagerImpl#updateSlotState;如果有pendingSlotRequest,就直接分配

    • SlotManagerImpl#handleFreeSlot;否则就更新freeSlots变量

    流程结束后,SlotManager如下,可以看到此时slots个数是两个,freeSlots也是两个,说明都是空闲的:

    this = {SlotManagerImpl@11120} 
     scheduledExecutor = {ActorSystemScheduledExecutorAdapter@11125} 
     slotRequestTimeout = {Time@11127} "300000 ms"
     taskManagerTimeout = {Time@11128} "30000 ms"
     slots = {HashMap@11122}  size = 2
      {SlotID@9643} "40d390ec-7d52-4f34-af86-d06bb515cc48_1" -> {TaskManagerSlot@19206} 
      {SlotID@8629} "40d390ec-7d52-4f34-af86-d06bb515cc48_0" -> {TaskManagerSlot@13322} 
     freeSlots = {LinkedHashMap@11129}  size = 2
      {SlotID@8629} "40d390ec-7d52-4f34-af86-d06bb515cc48_0" -> {TaskManagerSlot@13322} 
      {SlotID@9643} "40d390ec-7d52-4f34-af86-d06bb515cc48_1" -> {TaskManagerSlot@19206} 
     taskManagerRegistrations = {HashMap@11130}  size = 1
     fulfilledSlotRequests = {HashMap@11131}  size = 0
     pendingSlotRequests = {HashMap@11132}  size = 0
     pendingSlots = {HashMap@11133}  size = 0
     slotMatchingStrategy = {AnyMatchingSlotMatchingStrategy@11134} "INSTANCE"
     slotRequestTimeoutCheck = {ActorSystemScheduledExecutorAdapter$ScheduledFutureTask@11139} 
    

    2.2 心跳机制更新Slot状态

    Flink的心跳机制也会被利用来进行Slots信息的汇报,Slot Report被包括在心跳payload中。

    首先在 TE 中建立Slot Report

    • TaskExecutor#heartbeatFromResourceManager
    • HeartbeatManagerImpl#requestHeartbeat
    • TaskExecutor$ResourceManagerHeartbeatListener # retrievePayload
    • TaskSlotTableImpl # createSlotReport

    程序运行到 RM,于是 SlotManagerImpl 调用到 reportSlotStatus,进行Slot状态更新。

    • ResourceManager#heartbeatFromTaskManager

    • HeartbeatManagerImpl#receiveHeartbeat

    • ResourceManager$TaskManagerHeartbeatListener#reportPayload

    • SlotManagerImpl#reportSlotStatus,此时的SlotReport如下:

      • slotReport = {SlotReport@8718} 
         slotsStatus = {ArrayList@8717}  size = 2
          0 = {SlotStatus@9025} "SlotStatus{slotID=d99e16d7-a30c-4e21-b270-f82884b1813f_0, resourceProfile=ResourceProfile{managedMemory=64.000mb (67108864 bytes), networkMemory=32.000mb (33554432 bytes)}, allocationID=null, jobID=null}"
           slotID = {SlotID@9032} "d99e16d7-a30c-4e21-b270-f82884b1813f_0"
           resourceProfile = {ResourceProfile@4194} "ResourceProfile{managedMemory=64.000mb (67108864 bytes), networkMemory=32.000mb (33554432 bytes)}"
           allocationID = null
           jobID = null
          1 = {SlotStatus@9026} "SlotStatus{slotID=d99e16d7-a30c-4e21-b270-f82884b1813f_1, resourceProfile=ResourceProfile{managedMemory=64.000mb (67108864 bytes), networkMemory=32.000mb (33554432 bytes)}, allocationID=null, jobID=null}"
           slotID = {SlotID@9029} "d99e16d7-a30c-4e21-b270-f82884b1813f_1"
           resourceProfile = {ResourceProfile@4194} "ResourceProfile{managedMemory=64.000mb (67108864 bytes), networkMemory=32.000mb (33554432 bytes)}"
           allocationID = null
           jobID = null
        
    • SlotManagerImpl#updateSlot

    • SlotManagerImpl#updateSlotState;如果有pendingSlotRequest,就直接分配

    • SlotManagerImpl#handleFreeSlot;否则就更新freeSlots变量

      • freeSlots.put(freeSlot.getSlotId(), freeSlot);
        

    0x03 生成ExecutionGraph阶段

    当Job提交之后,经过一系列处理,Scheduler会建立ExecutionGraph。ExecutionGraph 是 JobGraph 的并行版本。而通过一系列的分析,才可以最终把任务分发到相关的任务槽中。槽会根据CPU的数量提前指定出来,这样可以最大限度的利用CPU的计算资源。如果Slot耗尽,也就意味着新分发的作业任务是无法执行的。

    ExecutionGraphJobManager根据JobGraph生成的分布式执行图,是调度层最核心的数据结构。

    一个JobVertex / ExecutionJobVertex代表的是一个operator,而具体的ExecutionVertex则代表了一个Task。

    在生成StreamGraph时候,StreamGraph.addOperator方法就已经确定了operator是什么类型,比如OneInputStreamTask,或者SourceStreamTask等。

    假设OneInputStreamTask.class即为生成的StreamNode的vertexClass。这个值会一直传递,当StreamGraph被转化成JobGraph的时候,这个值会被传递到JobVertex的invokableClass。然后当JobGraph被转成ExecutionGraph的时候,这个值被传入到ExecutionJobVertex.TaskInformation.invokableClassName中,最后一直传到Task中。

    本系列代码执行序列如下:

    • JobMaster#createScheduler

    • DefaultSchedulerFactory#createInstance

    • DefaultScheduler#init

    • SchedulerBase#init

    • SchedulerBase#createAndRestoreExecutionGraph

    • SchedulerBase#createExecutionGraph

    • ExecutionGraphBuilder#buildGraph

    • ExecutionGraph#attachJobGraph

    • ExecutionJobVertex#init,这里根据并行度来确定要建立多少个Task,即多少个ExecutionVertex。

      • int numTaskVertices = vertexParallelism > 0 ? vertexParallelism : defaultParallelism;
        this.taskVertices = new ExecutionVertex[numTaskVertices];
        
    • ExecutionVertex#init,这里会生成Execution。

      • this.currentExecution = new Execution( 
        			getExecutionGraph().getFutureExecutor(),
        			this,	0, initialGlobalModVersion,	createTimestamp, timeout);
        

    0x04 调度阶段

    任务的流程就是通过作业分发到TaskManager,然后再分发到指定的Slot进行执行。

    这部分调度阶段的代码只是利用CompletableFuture把程序执行架构搭建起来,可以把认为是自顶之下进行操作

    Job开始调度之后,代码执行序列如下:

    • JobMaster#startJobExecution

    • JobMaster#resetAndStartScheduler

    • Future操作

    • JobMaster#startScheduling

    • SchedulerBase#startScheduling

    • DefaultScheduler#startSchedulingInternal

    • LazyFromSourcesSchedulingStrategy#startScheduling,这里开始针对Vertices进行资源分配和部署

      • allocateSlotsAndDeployExecutionVertices(schedulingTopology.getVertices());
        
    • LazyFromSourcesSchedulingStrategy#allocateSlotsAndDeployExecutionVertices,这里会遍历ExecutionVertex,筛选出Create状态的 & 输入Ready的节点。

      • private void allocateSlotsAndDeployExecutionVertices(
              final Iterable<? extends SchedulingExecutionVertex<?, ?>> vertices) {
           // 取出状态是CREATED,且输入Ready的 ExecutionVertex
        	 final Set<ExecutionVertexID> verticesToDeploy = IterableUtils.toStream(vertices)
        			.filter(IS_IN_CREATED_EXECUTION_STATE.and(isInputConstraintSatisfied()))
        			.map(SchedulingExecutionVertex::getId)
        			.collect(Collectors.toSet());
           // 根据 ExecutionVertex 建立 DeploymentOption
           final List<ExecutionVertexDeploymentOption> vertexDeploymentOptions = ...;
           // 分配资源并且部署
           schedulerOperations.allocateSlotsAndDeploy(vertexDeploymentOptions);
        }
        
    • DefaultScheduler#allocateSlotsAndDeploy

    这里来到了本文第一个关键函数 allocateSlotsAndDeploy。其主要功能是:

    1. allocateSlots分配Slot,其实这时候并没有分配,而是建立一系列Future,然后根据Future返回SlotExecutionVertexAssignment列表。
    2. 根据SlotExecutionVertexAssignment建立DeploymentHandle
    3. 根据deploymentHandles进行部署,其实是根据Future把部署搭建起来,具体如何部署需要在slot分配成功之后再执行。
    @Override
    public void allocateSlotsAndDeploy(final List<ExecutionVertexDeploymentOption> executionVertexDeploymentOptions) {
       validateDeploymentOptions(executionVertexDeploymentOptions);
    
       final Map<ExecutionVertexID, ExecutionVertexDeploymentOption> deploymentOptionsByVertex =
          groupDeploymentOptionsByVertexId(executionVertexDeploymentOptions);
    
       final List<ExecutionVertexID> verticesToDeploy = executionVertexDeploymentOptions.stream()
          .map(ExecutionVertexDeploymentOption::getExecutionVertexId)
          .collect(Collectors.toList());
    
       final Map<ExecutionVertexID, ExecutionVertexVersion> requiredVersionByVertex =
          executionVertexVersioner.recordVertexModifications(verticesToDeploy);
    
       transitionToScheduled(verticesToDeploy);
    
       // 分配Slot,其实这时候并没有分配,而是建立一系列Future,然后根据Future返回SlotExecutionVertexAssignment列表
       final List<SlotExecutionVertexAssignment> slotExecutionVertexAssignments =
          allocateSlots(executionVertexDeploymentOptions);
    
       // 根据SlotExecutionVertexAssignment建立DeploymentHandle
       final List<DeploymentHandle> deploymentHandles = createDeploymentHandles(
          requiredVersionByVertex,
          deploymentOptionsByVertex,
          slotExecutionVertexAssignments);
      
       // 根据deploymentHandles进行部署,其实是根据Future把部署搭建起来,具体如何部署需要在slot分配成功之后再执行
       if (isDeployIndividually()) {
          deployIndividually(deploymentHandles);
       } else {
          waitForAllSlotsAndDeploy(deploymentHandles);
       }
    }
    
    

    接下来 两个小章节我们分别针对 allocateSlots 和 deployIndividually / waitForAllSlotsAndDeploy 进行分析。

    0x05 分配资源阶段

    注意,此处的入口为 allocateSlotsAndDeploy 的allocateSlots 调用

    在分配slot时,首先会在JobMaster中SlotPool中进行分配,具体是先SlotPool中获取所有slot,然后尝试选择一个最合适的slot进行分配,这里的选择有两种策略,即按照位置优先和按照之前已分配的slot优先;若从SlotPool无法分配,则通过RPC请求向ResourceManager请求slot,若此时并未连接上ResourceManager,则会将请求缓存起来,待连接上ResourceManager后再申请。

    5.1 CompletableFuture

    CompletableFuture 首先是一个 Future,它拥有 Future 所有的功能,包括取得异步执行结果,取消正在执行的任务等,其次是 一个CompleteStage,其最大作用是将回调改为链式调用,从而将 Future 组合起来。

    此处生成了执行框架,即通过三个 CompletableFuture 构成了执行框架

    我们按照出现顺序命名为 Future 1,Future 2,Future 3。

    但是这个反过来说明反而更方便。我们可以看到,'

    出现次序是 Future 1,Future 2,Future 3

    调用顺序是 Future 3 ---> Future 2 ---> Future 1

    5.1.1 Future 3

    我们可以称之为 PhysicalSlot Future

    类型是:CompletableFuture

    生成在:requestNewAllocatedSlot 函数中对 PendingRequest 的生成。PendingRequest 的构造函数中有 new CompletableFuture<>(),这个 Future 3 是 PendingRequest 的成员变量。

    用处是:

    • PendingRequest 会 加入到 waitingForResourceManager

    回调函数作用是:

    • 在 allocateMultiTaskSlot 的 whenComplete 会把payload赋值给slot,allocatedSlot.tryAssignPayload
    • 进一步回调在 createRootSlot 函数 的 forward . thenApply 语句,会 设置为 Future 3 回调 Future 2 的回调函数

    何时回调

    • TM,TE offer Slot的时候,会根据 PendingRequest 间接回调到这里

    6.1.2 Future 2

    我们可以称之为 allocationFuture

    类型是:

    • CompletableFuture ,CompletableFuture 有类型转换

    生成在:

    • createRootSlot函数中。final CompletableFuture slotContextFutureAfterRootSlotResolution = new CompletableFuture<>();

    用处是:

    • 把 Future 2 设置为 multiTaskSlot 的成员变量 private final CompletableFuture<? extends SlotContext> slotContextFuture;
    • Future 2 其实也就是 SingleTaskSlot 的 parent.getSlotContextFuture(),因为 multiTaskSlot 和 SingleTaskSlot 是父子关系
    • 在 SingleTaskSlot 构造函数 中,Future 2 会赋值给 SingleTaskSlot 的成员变量 singleLogicalSlotFuture。
    • 即 Future 2 实际上是 SingleTaskSlot 的成员变量 singleLogicalSlotFuture
    • SchedulerImpl # allocateSharedSlot 函数,return leaf.getLogicalSlotFuture(); 会被返回 singleLogicalSlotFuture 给外层调用,就是外层看到的 allocationFuture。

    回调函数作用是:

    • 在 SingleTaskSlot 构造函数 中,会生成一个 SingleLogicalSlot(未来回调时候会真正生成 )
    • 在 internalAllocateSlot 函数中,会回调 Future 1,allocationResultFuture的回调函数

    何时回调

    • 被 Future 3 的回调函数调用

    6.1.3 Future 1

    我们可以称之为 allocationResultFuture

    类型是:

    • CompletableFuture

    生成在:

    • SchedulerImpl#allocateSlotInternal,这里生成了第一个 CompletableFuture

    用处是:

    • 后续 Deploy 时候会用到 这个 Future 1,会通过 handle 给 Future 1 再加上两个后续调用,是在 Future 1 结束之后的后续调用。

    回调函数作用是:

    • allocateSlotsFor 函数中有错误处理
    • 后续 Deploy 时候会用到 这个 Future 1,会通过 handle 给 Future 1 再加上两个后续调用,是在 Future 1 结束之后的后续调用。

    何时回调

    • 语句在internalAllocateSlot中,但是在 Future 2 回调函数中调用

    5.2 流程图

    这里比较复杂,先给出流程图

     *  Run in Job Manager
     *
     *    DefaultScheduler#allocateSlotsAndDeploy 
     *        |
     *        +----> DefaultScheduler#allocateSlots
     *        |     //把ExecutionVertex转化为ExecutionVertexSchedulingRequirements
     *        |     
     *        +----> DefaultExecutionSlotAllocator#allocateSlotsFor( 调用 1 开始 )
     *        |     // 得到 我们的第一个 CompletableFuture,我们称之为 Future 1
     *        |  
     *        |    
     *        +--------------> NormalSlotProviderStrategy#allocateSlot 
     *        |    
     *        |        
     *        +--------------> SchedulerImpl#allocateSlotInternal
     *        |     // 生成了第一个 CompletableFuture,以后称之为 allocationResultFuture
     *        |  
     *  ┌────────────┐   
     *  │  Future 1  │ 生成 allocationResultFuture
     *  └────────────┘ 
     *        │     
     *        │            
     *        +----> SchedulerImpl#internalAllocateSlot( 调用 2 开始 )  
     *        |      // Future 1 做为参数被传进来,这里会继续调用,生成 Future 2, Future 3
     *        |     
     *        |       
     *        +-----------> SchedulerImpl#allocateSharedSlot( 调用 3 开始 )
     *        |    	// 这里涉及到 MultiTaskSlot 和 SingleTaskSlot
     *        |        
     *        +-----------> SchedulerImpl # allocateMultiTaskSlot ( 调用 4 开始 )
     *        |  
     *        |       
     *        +--------------------> SchedulerImpl # requestNewAllocatedSlot
     *        |    
     *        |    
     *        +--------------------> SlotPoolImpl#requestNewAllocatedSlot
     *        |    	// 这里生成一个 PendingRequest
     *        | 	// PendingRequest的构造函数中有 new CompletableFuture<>(),
     *        |     // 所以这里是生成了第三个 Future,注意这里的 Future 是针对 PhysicalSlot  
     *        |  
     *        |  
     *  ┌────────────┐   
     *  │  Future 3  │ 生成 Future<PhysicalSlot>,这个 Future 3 实际是对用户不可见的。
     *  └────────────┘      
     *        |  
     *        | 
     *        +-----------> SchedulerImpl # allocateMultiTaskSlot( 调用 4 结束 )
     *        |      // 回到 ( 调用 4 ) 这里,得倒 Future 3
     *        |      // 这里得倒了第三个 Future<PhysicalSlot> 
     *        |      // 第三是因为从用户角度看,它是第三个出现的     
     *        |     
     *        +-----------------------> slotSharingManager # createRootSlot  
     *        |      // 把 Future 3 做为参数传进去     
     *        |      // 这里马上生成 Future 2
     *        |      // Future 2 被设置为 multiTaskSlot 的成员变量 slotContextFuture;  
     *        |      // 然后forward . thenApply 语句 会 设置为 Future 3 回调 Future 2 的回调函数
     *        |     
     *        |       
     *        +-----------> SchedulerImpl#allocateSharedSlot
     *        |    	// 回到 ( 调用 3 ) 这里   
     *        |     
     *        | 
     *        +-----------------------> SlotSharingManager#allocateSingleTaskSlo  
     *        |  // 在 rootMultiTaskSlot 之上生成一个 SingleTaskSlot leaf加入到allTaskSlots。    
     *        |  // leaf.getLogicalSlotFuture(); 这个就是Future 2,设置好的
     *        |   
     *        |        
     *        +-----------> SchedulerImpl#allocateSharedSlot
     *        |    	// 还在 ( 调用 3 ) 这里  
     *        |     // return leaf.getLogicalSlotFuture(); 返回 Future 2   
     *        | 
     *        |       
     *  ┌────────────┐   
     *  │  Future 2  │
     *  └────────────┘  
     *        |     
     *        |       
     *        |       
     *        +----> SchedulerImpl#internalAllocateSlot    
     *        |      // 回到 ( 调用 2 ) 这里 
     *        |      // 设置,在 Future 2 的回调函数中会调用 Future 1    
     *        |  
     *        |      
     *        +----> DefaultExecutionSlotAllocator#allocateSlotsFor 
     *        |     // 回到 ( 调用 1 ) 这里 
     *        |
     *        |  
     *        |       
     *  ┌────────────┐   
     *  │  Future 1  │ 
     *  └────────────┘    
     *        |  
     *        |      
     *        +---->  createDeploymentHandles    
     *        |  // 生成 DeploymentHandle
     *        |     
     *        |       
     *        +-----------> deployIndividually(deploymentHandles);    
     *        |           // 这里会给 Future 1 再加上两个 回调函数,作为 部署回调
     *        | 
    
    

    下图是为了手机阅读。

    5.3 具体执行路径

    默认情况下,Flink 允许subtasks共享slot,条件是它们都来自同一个Job的不同task的subtask。结果可能一个slot持有该job的整个pipeline。允许slot共享有以下两点好处:

    • Flink 集群所需的task slots数与job中最高的并行度一致。也就是说我们不需要再去计算一个程序总共会起多少个task了。
    • 更容易获得更充分的资源利用。如果没有slot共享,那么非密集型操作source/flatmap就会占用同密集型操作 keyAggregation/sink 一样多的资源。如果有slot共享,将基线的2个并行度增加到6个,能充分利用slot资源,同时保证每个TaskManager能平均分配到重的subtasks。

    此处执行路径大致如下:

    • DefaultScheduler#allocateSlotsAndDeploy

    • DefaultScheduler#allocateSlots;该过程会把ExecutionVertex转化为ExecutionVertexSchedulingRequirements,会封装包含一些location信息、sharing信息、资源信息等

    • DefaultExecutionSlotAllocator#allocateSlotsFor;我们小节实际是从这里开始分析,这里会进行一系列操作,一层层调用下去。首先这个函数会得到我们的第一个 CompletableFuture,我们称之为 allocationResultFuture,这个名字的由来后续就会知道。这个 slotFuture 会赋值给 SlotExecutionVertexAssignment,然后传递给外面。后续 Deploy 时候会用到 这个 slotFuture,会通过 handle 给 slotFuture 再加上两个后续调用,是在slotFuture结束之后的后续调用。

      • public List<SlotExecutionVertexAssignment> allocateSlotsFor(...) {
        		for (ExecutionVertexSchedulingRequirements schedulingRequirements : executionVertexSchedulingRequirements) {
              
              // 得到第一个 CompletableFuture,具体是在 calculatePreferredLocations 中通过 
        			CompletableFuture<LogicalSlot> slotFuture = 
                calculatePreferredLocations(...).thenCompose(...) ->
        								slotProviderStrategy.allocateSlot( // 函数里面生成了第一个CompletableFuture
        									slotRequestId,
        									new ScheduledUnit(...),
        									SlotProfile.priorAllocation(...)));
        
        			SlotExecutionVertexAssignment slotExecutionVertexAssignment =
        					new SlotExecutionVertexAssignment(executionVertexId, slotFuture);
        
        			slotFuture.whenComplete(
        					(ignored, throwable) -> { // 第一个CompletableFuture的回调函数,里其实只是异常处理,后续有人会调用到这里
        						pendingSlotAssignments.remove(executionVertexId);
        						if (throwable != null) {
        							slotProviderStrategy.cancelSlotRequest(slotRequestId, slotSharingGroupId, throwable);
        						}
        					});
        
        			slotExecutionVertexAssignments.add(slotExecutionVertexAssignment);
        		}
        
        		return slotExecutionVertexAssignments;
        }
        
        
    • NormalSlotProviderStrategy#allocateSlot(slotProviderStrategy.allocateSlot)

    • SchedulerImpl#allocateSlotInternal,这里生成了第一个 CompletableFuture,我们可以称之为 allocationResultFuture

      • private CompletableFuture<LogicalSlot> allocateSlotInternal(...) {
            // 这里生成了第一个 CompletableFuture,我们以后称之为 allocationResultFuture
        		final CompletableFuture<LogicalSlot> allocationResultFuture = new CompletableFuture<>();
            // allocationResultFuture 会传送进去继续处理
        		internalAllocateSlot(allocationResultFuture, slotRequestId, scheduledUnit, 
                                 slotProfile, allocationTimeout);
            // 返回 allocationResultFuture
        		return allocationResultFuture;
        }
        
        
    • SchedulerImpl#allocateSlot

    • SchedulerImpl#internalAllocateSlot,该方法会根据vertex是否共享slot来分配singleSlot/SharedSlot。这里得到第二个 CompletableFuture,我们以后成为 allocationFuture

      • private void internalAllocateSlot(
        			CompletableFuture<LogicalSlot> allocationResultFuture, ...) {
          	// 这里得到第二个 CompletableFuture,我们以后称为 allocationFuture,注意目前只是得到,不是生成。
        		CompletableFuture<LogicalSlot> allocationFuture = scheduledUnit.getSlotSharingGroupId() == null ?
        			allocateSingleSlot(slotRequestId, slotProfile, allocationTimeout) :
        			allocateSharedSlot(slotRequestId, scheduledUnit, slotProfile, allocationTimeout);
        		// 第二个Future,allocationFuture的回调函数。注意,CompletableFuture可以连续调用多个whenComplete。
        		allocationFuture.whenComplete((LogicalSlot slot, Throwable failure) -> {
        			if (failure != null) { // 异常处理
        				cancelSlotRequest(...);
        				allocationResultFuture.completeExceptionally(failure);
        			} else {
        				allocationResultFuture.complete(slot); // 它将回调第一个 allocationResultFuture的回调函数
        			}
        		});
        }
        
        
    • SchedulerImpl#allocateSharedSlot,这里也比较复杂,涉及到 MultiTaskSlot 和 SingleTaskSlot

      • private CompletableFuture<LogicalSlot> allocateSharedSlot(...) {
         		// allocate slot with slot sharing
         		final SlotSharingManager multiTaskSlotManager = slotSharingManagers.computeIfAbsent(
         			scheduledUnit.getSlotSharingGroupId(),
         			id -> new SlotSharingManager(id,slotPool,this)); // 生成 SlotSharingManager
         
         		final SlotSharingManager.MultiTaskSlotLocality multiTaskSlotLocality;
         
         			if (scheduledUnit.getCoLocationConstraint() != null) {
         				multiTaskSlotLocality = allocateCoLocatedMultiTaskSlot(...);
         			} else {
         				multiTaskSlotLocality = allocateMultiTaskSlot(...); // 这里生成 MultiTaskSlot
         			}
         
           	// 这里生成 SingleTaskSlot
         		final SlotSharingManager.SingleTaskSlot leaf = multiTaskSlotLocality.getMultiTaskSlot().allocateSingleTaskSlot(...);
           
         		return leaf.getLogicalSlotFuture(); // 返回 SingleTaskSlot 的 future,就是第二个Future,具体生成我们在下面会详述
         	}
        
        
    • SchedulerImpl # allocateMultiTaskSlot,这里是一个难点函数。因为这里生成了第三个 Future ,这里把第三个 Future 提前说明第三是因为从用户角度看,它是第三个出现的

      • private SlotSharingManager.MultiTaskSlotLocality allocateMultiTaskSlot(...) {
         
         		SlotSharingManager.MultiTaskSlot multiTaskSlot = slotSharingManager.getUnresolvedRootSlot(groupId);
         
         		if (multiTaskSlot == null) { 
              // requestNewAllocatedSlot 会调用 SlotPoolImpl 的同名函数
              // 得到第 三 个 Future,注意,这个 Future 针对的是 PhysicalSlot
         			final CompletableFuture<PhysicalSlot> slotAllocationFuture = requestNewAllocatedSlot(...); 
         
             // 使用 第 三 个 Future 来构建 multiTaskSlot
         			multiTaskSlot = slotSharingManager.createRootSlot(...,slotAllocationFuture,...);
         
             // 第 三 个 Future的回调函数,这里会把payload赋值给slot
         			slotAllocationFuture.whenComplete(
         				(PhysicalSlot allocatedSlot, Throwable throwable) -> {
         					final SlotSharingManager.TaskSlot taskSlot = slotSharingManager.getTaskSlot(multiTaskSlotRequestId);
         
         					if (taskSlot != null) {
                     // 会把payload赋值给slot
         							if (!allocatedSlot.tryAssignPayload(((SlotSharingManager.MultiTaskSlot) taskSlot))) {...}
         					} 
         				});
         		}
         
         		return SlotSharingManager.MultiTaskSlotLocality.of(multiTaskSlot, Locality.UNKNOWN);
         	}
        
        
        
    • SchedulerImpl # requestNewAllocatedSlot 会调用 SlotPoolImpl 的同名函数

    • SlotPoolImpl#requestNewAllocatedSlot,这里生成一个 PendingRequest

      • public CompletableFuture<PhysicalSlot> requestNewAllocatedSlot(...) {
         
         		// 生成 PendingRequest
         		final PendingRequest pendingRequest = PendingRequest.createStreamingRequest(slotRequestId, resourceProfile);
         
         		// 添加 PendingRequest 到 waitingForResourceManager,然后返回Future
         		return requestNewAllocatedSlotInternal(pendingRequest)
         			.thenApply((Function.identity()));
         	}
        
        
      • PendingRequest的构造函数中有 new CompletableFuture<>(),所以这里是生成了第三个 Future,注意这里的 Future 是针对 PhysicalSlot

      • requestNewAllocatedSlotInternal

        • private CompletableFuture<AllocatedSlot> requestNewAllocatedSlotInternal(PendingRequest pendingRequest) {
          
             if (resourceManagerGateway == null) {
                // 就是把 pendingRequest 加到 waitingForResourceManager 之中
                stashRequestWaitingForResourceManager(pendingRequest);
             } else {
                requestSlotFromResourceManager(resourceManagerGateway, pendingRequest);
             }
             return pendingRequest.getAllocatedSlotFuture(); // 第三个Future
          }
          
          
    • SlotSharingManager#createRootSlot,这里才是生成 第二个 Future 的地方

      • MultiTaskSlot createRootSlot(
              SlotRequestId slotRequestId,
              CompletableFuture<? extends SlotContext> slotContextFuture, // 参数是第三个Future
              SlotRequestId allocatedSlotRequestId) {
        
           // 生成第二个Future<SlotContext>
           final CompletableFuture<SlotContext> slotContextFutureAfterRootSlotResolution = new CompletableFuture<>();
          
           final MultiTaskSlot rootMultiTaskSlot = createAndRegisterRootSlot(...
              slotContextFutureAfterRootSlotResolution); // 第二个Future 在 createAndRegisterRootSlot 函数中 被赋值为 MultiTaskSlot的 slotContextFuture 成员变量
        
           FutureUtils.forward(
              slotContextFuture.thenApply( // 第三个Future进一步回调时候,会回调第二个Future
                 (SlotContext slotContext) -> {
                    // add the root node to the set of resolved root nodes once the SlotContext future has
                    // been completed and we know the slot's TaskManagerLocation
                    tryMarkSlotAsResolved(slotRequestId, slotContext);
                    return slotContext;
                 }),
              slotContextFutureAfterRootSlotResolution); // 在这里回调第二个Future
        
           return rootMultiTaskSlot;
        }
        
        
    • SlotSharingManager#allocateSingleTaskSlot,这里的目的是在 rootMultiTaskSlot 之上生成一个 SingleTaskSlot leaf加入到allTaskSlots。

      • SingleTaskSlot allocateSingleTaskSlot(
        				SlotRequestId slotRequestId, ResourceProfile resourceProfile,
        				AbstractID groupId, Locality locality) {
        
        			final SingleTaskSlot leaf = new SingleTaskSlot(
        				slotRequestId, resourceProfile, groupId, this, locality);
        
        			children.put(groupId, leaf);
        
        			// register the newly allocated slot also at the SlotSharingManager
        			allTaskSlots.put(slotRequestId, leaf);
        
        			reserveResource(resourceProfile);
        
        			return leaf;
        }
        
        
    • 最后回到 SchedulerImpl # allocateSharedSlot 函数,return leaf.getLogicalSlotFuture(); 这里也是一个难点,即 getLogicalSlotFuture 返回的是一个 CompletableFuture(就是第二个 Future),但是这个 SingleLogicalSlot 是未来回调时候才会生成。

      • public final class SingleTaskSlot extends TaskSlot {
        		private final MultiTaskSlot parent;
           // future containing a LogicalSlot which is completed once the underlying SlotContext future is completed
        		private final CompletableFuture<SingleLogicalSlot> singleLogicalSlotFuture;
          
            private SingleTaskSlot() {
                  singleLogicalSlotFuture = parent.getSlotContextFuture()
                    .thenApply(
                      (SlotContext slotContext) -> {
                        return new SingleLogicalSlot( // 未来回调时候才会生成
                          slotRequestId,
                          slotContext,
                          slotSharingGroupId,
                          locality,
                          slotOwner);
                      });
                }
        
            CompletableFuture<LogicalSlot> getLogicalSlotFuture() {
               return singleLogicalSlotFuture.thenApply(Function.identity());
            }  
        }
        
        

    0x06 Deploy阶段

    注意,此处的入口为 allocateSlotsAndDeploy函数中 的 deployIndividually / waitForAllSlotsAndDeploy 语句

    此处执行路径大致如下:

    • DefaultScheduler#allocateSlotsAndDeploy

    • DefaultScheduler#allocateSlots;得到 SlotExecutionVertexAssignment 列表,上节已经详细介绍(该过程会ExecutionVertex转化为ExecutionVertexSchedulingRequirements,会封装包含一些location信息、sharing信息、资源信息等)

    • List deploymentHandles = createDeploymentHandles() 根据SlotExecutionVertexAssignment建立DeploymentHandle

    • DefaultScheduler#deployIndividually 根据deploymentHandles进行部署,其实是根据Future把部署搭建起来,具体如何部署需要在slot分配成功之后再执行。我们小节实际是从这里开始分析,具体代码可以看出,取出了 Future 1 进行一些列操作

      • private void deployIndividually(final List<DeploymentHandle> deploymentHandles) {
           for (final DeploymentHandle deploymentHandle : deploymentHandles) {
              FutureUtils.assertNoException(
                 deploymentHandle
                    .getSlotExecutionVertexAssignment()
                    .getLogicalSlotFuture()
                    .handle(assignResourceOrHandleError(deploymentHandle))
                    .handle(deployOrHandleError(deploymentHandle)));
           }
        }
        
        
    • DefaultScheduler#assignResourceOrHandleError;就是返回函数,以备后续回调使用

      • private BiFunction<LogicalSlot, Throwable, Void> assignResourceOrHandleError(final DeploymentHandle deploymentHandle) {
          
           final ExecutionVertexVersion requiredVertexVersion = deploymentHandle.getRequiredVertexVersion();
           final ExecutionVertexID executionVertexId = deploymentHandle.getExecutionVertexId();
        
           return (logicalSlot, throwable) -> {
              if (throwable == null) {
                 final ExecutionVertex executionVertex = getExecutionVertex(executionVertexId);
                 final boolean sendScheduleOrUpdateConsumerMessage = deploymentHandle.getDeploymentOption().sendScheduleOrUpdateConsumerMessage();
                 executionVertex
                    .getCurrentExecutionAttempt()
                    .registerProducedPartitions(logicalSlot.getTaskManagerLocation(), sendScheduleOrUpdateConsumerMessage);
                 executionVertex.tryAssignResource(logicalSlot);
              } else {
                 handleTaskDeploymentFailure(executionVertexId, maybeWrapWithNoResourceAvailableException(throwable));
              }
              return null;
           };
        }
        
        
    • deployOrHandleError 就是返回函数,以备后续回调使用

      • private BiFunction<Object, Throwable, Void> deployOrHandleError(final DeploymentHandle deploymentHandle) {
          
           final ExecutionVertexVersion requiredVertexVersion = deploymentHandle.getRequiredVertexVersion();
           final ExecutionVertexID executionVertexId = requiredVertexVersion.getExecutionVertexId();
        
           return (ignored, throwable) -> {
              if (throwable == null) {
                 deployTaskSafe(executionVertexId);
              } else {
                 handleTaskDeploymentFailure(executionVertexId, throwable);
              }
              return null;
           };
        }
        
        

    0x07 RM分配资源

    之前的工作基本都是在 JM 之中。通过 Scheduler 和 SlotPool 来完成申请资源和部署阶段。目前 SlotPool 之中已经积累了一个 PendingRequest,等 SlotPool 连接上 RM,就可以开始向 RM 申请资源了。

    当ResourceManager收到申请slot请求时,若发现该JobManager未注册,则直接抛出异常;否则将请求转发给SlotManager处理,SlotManager中维护了集群所有空闲的slot(TaskManager会向ResourceManager上报自己的信息,在ResourceManager中由SlotManager保存Slot和TaskManager对应关系),并从其中找出符合条件的slot,然后向TaskManager发送RPC请求申请对应的slot。

    代码执行路径如下:

    • JobMaster # establishResourceManagerConnection 程序执行在 JM 之中

    • SlotPoolImpl # connectToResourceManager

    • SlotPoolImpl # requestSlotFromResourceManager,这里 Pool 会向 RM 进行 RPC 请求。

      • private void requestSlotFromResourceManager(
        			final ResourceManagerGateway resourceManagerGateway,
        			final PendingRequest pendingRequest) {
            // 生成一个 AllocationID,这个会传到 TM 那里,注册到 TaskSlot上。
            final AllocationID allocationId = new AllocationID();
            // 生成一个SlotRequest,并且向 RM 进行 RPC 请求。
        	CompletableFuture<Acknowledge> rmResponse = 
                				resourceManagerGateway.requestSlot(
                                        jobMasterId,
                                        new SlotRequest(jobId, allocationId, 
                                             		pendingRequest.getResourceProfile(), 
                                        jobManagerAddress),
                                        rpcTimeout);
        }
        
    • RPC

    • ResourceManager # requestSlot 程序切换到 RM 之中

    • SlotManagerImpl # registerSlotRequest。registerSlotRequest方法会先执行checkDuplicateRequest判断是否有重复,没有重复的话,则将该slotRequest维护到pendingSlotRequests,然后调用internalRequestSlot进行分配,如果出现异常则从pendingSlotRequests中异常,然后抛出SlotManagerException。

      • pendingSlotRequests.put
        
    • SlotManagerImpl # internalRequestSlot

    • SlotManagerImpl # findMatchingSlot

    • SlotManagerImpl # internalAllocateSlot,此时是没有资源的,需要向 TM 要求资源

      • private void internalRequestSlot(PendingSlotRequest pendingSlotRequest) throws ResourceManagerException {
           final ResourceProfile resourceProfile = pendingSlotRequest.getResourceProfile();
           OptionalConsumer.of(findMatchingSlot(resourceProfile))
              .ifPresent(taskManagerSlot -> allocateSlot(taskManagerSlot, pendingSlotRequest))
              .ifNotPresent(() -> fulfillPendingSlotRequestWithPendingTaskManagerSlot(pendingSlotRequest));
        }
        
    • SlotManagerImpl # allocateSlot,向task manager要求资源。TaskExecutorGateway接口用来通过RPC分配任务槽,或者说分配任务的资源。

      • TaskExecutorGateway gateway = taskExecutorConnection.getTaskExecutorGateway();
        CompletableFuture<Acknowledge> requestFuture = gateway.requestSlot(
        			slotId,
        			pendingSlotRequest.getJobId(),
        			allocationId,
        			pendingSlotRequest.getResourceProfile(),
        			pendingSlotRequest.getTargetAddress(),
        			resourceManagerId,
        			taskManagerRequestTimeout);
        
    • RPC

    • TaskExecutor # requestSlot,程序切换到 TE

    • TaskSlotTableImpl # allocateSlot,分配资源,更新task slot map,把slot加入到 set of job slots 中。

      • public boolean allocateSlot(int index, JobID jobId, AllocationID allocationId,
        			ResourceProfile resourceProfile,Time slotTimeout) {
            taskSlot = new TaskSlot<>(index, resourceProfile, memoryPageSize, jobId, allocationId);
            taskSlots.put(index, taskSlot);
            allocatedSlots.put(allocationId, taskSlot);
            slots.add(allocationId);
        }
        
        

    0x08 Offer资源阶段

    此阶段是由 TE,TM 开始,就是TE 向 RM 提供 Slot,然后 RM 通知 JM 可以运行 Job。也可以认为这部分是从底向上的执行。

    等待所有的slot申请完成后,然后会将ExecutionVertex对应的Execution分配给对应的Slot,即从Slot中分配对应的资源给Execution,完成分配后可开始部署作业。

    这里两个关键点是:

    • 当 JM 收到 SlotOffer时候,就会根据 RPC传递过来的 taskManagerId 参数,构建一个 taskExecutorGateway,然后这个 taskExecutorGateway 被赋予为 AllocatedSlot . taskManagerGateway。这样就把 JM 范畴的 Slot 和 Slot 所在的 taskManager 联系起来
    • Execution 部署时候,是 从 SingleLogicalSlot ---> AllocatedSlot ---> TaskManagerGateway 这个顺序获取了 TaskManager 的 RPC 网关,然后通过 taskManagerGateway.submitTask 才能提交任务的。这样就把 Execution 部署阶段和执行阶段联系起来了
    ---------- Task Executor ----------
           │ 
           │ 
    ┌─────────────┐   
    │  TaskSlot   │  requestSlot
    └─────────────┘     
           │ 
           │                  
    ┌──────────────┐   
    │  SlotOffer   │  offerSlotsToJobManager
    └──────────────┘       
           │ 
           │      
    ------------- Job Manager -------------
           │ 
           │       
    ┌──────────────┐   
    │  SlotOffer   │  JobMaster#offerSlots(taskManagerId,slots)
    └──────────────┘     
           │ //taskManager = registeredTaskManagers.get(taskManagerId);     
           │ //taskManagerLocation = taskManager.f0;     
           │ //taskExecutorGateway = taskManager.f1;     
           │    
           │       
    ┌──────────────┐   
    │  SlotOffer   │  SlotPoolImpl#offerSlots
    └──────────────┘       
           │ 
           │      
    ┌───────────────┐   
    │ AllocatedSlot │  SlotPoolImpl#offerSlot
    └───────────────┘      
           │ 
           │      
    ┌───────────────┐   
    │ 回调 Future 3  │ SlotSharingManager#createRootSlot
    └───────────────┘      
           │ 
           │      
    ┌───────────────┐   
    │ 回调 Future 2  │  SingleTaskSlot#SingleTaskSlot 
    └───────────────┘      
           │ 
           │      
    ┌───────────────────┐   
    │ SingleLogicalSlot │ new SingleLogicalSlot
    └───────────────────┘    
           │ 
           │     
    ┌───────────────────┐   
    │ SingleLogicalSlot │  
    │ 回调 Future 1      │ allocationResultFuture.complete()
    └───────────────────┘   
           │    
           │        
    ┌───────────────────────────────┐  
    │     SingleLogicalSlot         │  
    │回调 assignResourceOrHandleError│ 
    └───────────────────────────────┘
           │    
           │        
    ┌────────────────┐   
    │ ExecutionVertex│ tryAssignResource
    └────────────────┘    
           │    
           │        
    ┌────────────────┐   
    │    Execution   │ tryAssignResource
    └────────────────┘       
           │    
           │        
    ┌──────────────────┐   
    │ SingleLogicalSlot│ tryAssignPayload
    └──────────────────┘  
           │    
           │        
    ┌───────────────────────┐   
    │   SingleLogicalSlot   │      
    │ 回调deployOrHandleError│ 
    └───────────────────────┘   
           │    
           │       
    ┌────────────────┐   
    │ ExecutionVertex│ deploy
    └────────────────┘    
           │    
           │        
    ┌────────────────┐   
    │    Execution   │ deploy // 关键点
    └────────────────┘        
           │  
           │    
           │        
     ---------- Task Executor ----------
           │    
           │     
    ┌────────────────┐   
    │  TaskExecutor  │ submitTask
    └────────────────┘     
           │    
           │        
    ┌────────────────┐   
    │  TaskExecutor  │ startTaskThread
    └────────────────┘         
    

    执行路径如下:

    • TaskExecutor # establishJobManagerConnection

    • TaskExecutor # offerSlotsToJobManager,这里就是遍历已经分配的TaskSlot,然后每个TaskSlot会生成一个SlotOffer(里面是allocationId,slotIndex,resourceProfile),这个会通过RPC发给 JM。

      • private void offerSlotsToJobManager(final JobID jobId) {
        				final Iterator<TaskSlot<Task>> reservedSlotsIterator = taskSlotTable.getAllocatedSlots(jobId);
        				final JobMasterId jobMasterId = jobManagerConnection.getJobMasterId();
        
        				final Collection<SlotOffer> reservedSlots = new HashSet<>(2);
        
        				while (reservedSlotsIterator.hasNext()) {
        					SlotOffer offer = reservedSlotsIterator.next().generateSlotOffer();
        					reservedSlots.add(offer);
        				}
            			// 把 SlotOffer 通过RPC发给 JM
        				CompletableFuture<Collection<SlotOffer>> acceptedSlotsFuture = 
                            jobMasterGateway.offerSlots(
                                    getResourceID(),
                                    reservedSlots,
                                    taskManagerConfiguration.getTimeout());    
        }
        
        
    • RPC

    • JobMaster # offerSlots 。程序执行到 JM。当 JM 收到 SlotOffer时候,就会根据 RPC传递过来的 taskManagerId 参数,构建一个 taskExecutorGateway,然后这个 taskExecutorGateway 被赋予为 AllocatedSlot . taskManagerGateway。这样就把 JM 范畴的 Slot 和 Slot 所在的 taskManager 联系起来

      • public CompletableFuture<Collection<SlotOffer>> offerSlots(
        			final ResourceID taskManagerId,
        			final Collection<SlotOffer> slots,
        			final Time timeout) {
        
        		Tuple2<TaskManagerLocation, TaskExecutorGateway> taskManager = registeredTaskManagers.get(taskManagerId);
        
        		final TaskManagerLocation taskManagerLocation = taskManager.f0;
        		final TaskExecutorGateway taskExecutorGateway = taskManager.f1;
        
        		final RpcTaskManagerGateway rpcTaskManagerGateway = new RpcTaskManagerGateway(taskExecutorGateway, getFencingToken());
        
        		return CompletableFuture.completedFuture(
        			slotPool.offerSlots(
        				taskManagerLocation,
        				rpcTaskManagerGateway,
        				slots));
        	}
        
        
    • SlotPoolImpl # offerSlots

    • SlotPoolImpl # offerSlot,这里根据 SlotOffer 的信息生成一个 AllocatedSlot,对于 AllocatedSlot 来说,有效信息就是 slotIndex, resourceProfile。提醒,AllocatedSlot implements PhysicalSlot。

      • boolean offerSlot(
        			final TaskManagerLocation taskManagerLocation,
        			final TaskManagerGateway taskManagerGateway,
        			final SlotOffer slotOffer) {
                
            // 根据 SlotOffer 的信息生成一个 AllocatedSlot,对于 AllocatedSlot 来说,有效信息就是 slotIndex, resourceProfile
        	final AllocatedSlot allocatedSlot = new AllocatedSlot(
               allocationID,
               taskManagerLocation,
               slotOffer.getSlotIndex(),
               slotOffer.getResourceProfile(),
               taskManagerGateway);
            
            allocatedSlots.add(pendingRequest.getSlotRequestId(), allocatedSlot);
        		if (pendingRequest != null) {
        			allocatedSlots.add(pendingRequest.getSlotRequestId(), allocatedSlot);
        
              // 这里取出了 pendingRequest 的 Future, 就是我们之前的 Future 3,进行回调
        			if (!pendingRequest.getAllocatedSlotFuture().complete(allocatedSlot)) 
                    {
        				// we could not complete the pending slot future --> try to fulfill another pending request
        				allocatedSlots.remove(pendingRequest.getSlotRequestId());
        				tryFulfillSlotRequestOrMakeAvailable(allocatedSlot);
        			} 
        		}
        }
        
        
    • 开始回调 Future 3,代码在 SlotSharingManager # createRootSlot 这里

      • FutureUtils.forward(
           slotContextFuture.thenApply(
              (SlotContext slotContext) -> {
                 // add the root node to the set of resolved root nodes once the SlotContext future has
                 // been completed and we know the slot's TaskManagerLocation
                 tryMarkSlotAsResolved(slotRequestId, slotContext); // 运行到这里
                 return slotContext;
              }),
           slotContextFutureAfterRootSlotResolution); // 然后到这里
        
        
    • 开始回调 Future 2,代码在 SingleTaskSlot 构造函数 ,因为有 PhysicalSlot extends SlotContext, 所以这里就把 物理Slot 映射成了一个 逻辑Slot

      • singleLogicalSlotFuture = parent.getSlotContextFuture()
           .thenApply(
              (SlotContext slotContext) -> {
                 return new SingleLogicalSlot( // 回调生成了 SingleLogicalSlot
                    slotRequestId,
                    slotContext,
                    slotSharingGroupId,
                    locality,
                    slotOwner);
              });
        
        
    • 开始回调 Future 1,代码在这里,调用到 后续 Deploy 时候设置的回调函数

      • allocationFuture.whenComplete((LogicalSlot slot, Throwable failure) -> {
           if (failure != null) {
              cancelSlotRequest(
                 slotRequestId,
                 scheduledUnit.getSlotSharingGroupId(),
                 failure);
              allocationResultFuture.completeExceptionally(failure);
           } else {
              allocationResultFuture.complete(slot); // 代码在这里
           }
        });
        
        
    • 继续回调到 Deploy 阶段设置的回调函数 assignResourceOrHandleError,就是分配资源

      • private BiFunction<LogicalSlot, Throwable, Void> assignResourceOrHandleError(final DeploymentHandle deploymentHandle) {
         
         		return (logicalSlot, throwable) -> {
         			if (executionVertexVersioner.isModified(requiredVertexVersion)) {
         
         			if (throwable == null) {
         				final ExecutionVertex executionVertex = getExecutionVertex(executionVertexId);
         				final boolean sendScheduleOrUpdateConsumerMessage = deploymentHandle.getDeploymentOption().sendScheduleOrUpdateConsumerMessage();
         				executionVertex
         					.getCurrentExecutionAttempt()
         					.registerProducedPartitions(logicalSlot.getTaskManagerLocation(), sendScheduleOrUpdateConsumerMessage);
         				executionVertex.tryAssignResource(logicalSlot); // 运行到这里
         			} 
         			return null;
         		};
         	}
        
        
      • 回调函数会深入调用 executionVertex.tryAssignResource,

      • ExecutionVertex # tryAssignResource

      • Execution # tryAssignResource

      • SingleLogicalSlot# tryAssignPayload(this),这里会把 Execution 自己 赋值给Slot.payload,最后 Execution 在 runtime 的变量举例如下:

        • payload = {Execution@10669} "Attempt #0 (CHAIN DataSource (at getDefaultTextLineDataSet(WordCountData.java:47) (org.apache.flink.api.java.io.CollectionInputFormat)) -> FlatMap (FlatMap at main(WordCount.java:64)) -> Combine (SUM(1), at main(WordCount.java:67) (1/1)) @ org.apache.flink.runtime.jobmaster.slotpool.SingleLogicalSlot@61c7928f - [SCHEDULED]"
           executor = {ScheduledThreadPoolExecutor@5928} "java.util.concurrent.ScheduledThreadPoolExecutor@6a2c6c71[Running, pool size = 3, active threads = 0, queued tasks = 1, completed tasks = 2]"
           vertex = {ExecutionVertex@10534} "CHAIN DataSource (at getDefaultTextLineDataSet(WordCountData.java:47) (org.apache.flink.api.java.io.CollectionInputFormat)) -> FlatMap (FlatMap at main(WordCount.java:64)) -> Combine (SUM(1), at main(WordCount.java:67) (1/1)"
           attemptId = {ExecutionAttemptID@10792} "2f8b6c7297527225ee4c8036c457ba27"
           globalModVersion = 1
           stateTimestamps = {long[9]@10793} 
           attemptNumber = 0
           rpcTimeout = {Time@5924} "18000000 ms"
           partitionInfos = {ArrayList@10794}  size = 0
           terminalStateFuture = {CompletableFuture@10795} "java.util.concurrent.CompletableFuture@2eb8f94c[Not completed]"
           releaseFuture = {CompletableFuture@10796} "java.util.concurrent.CompletableFuture@7c794914[Not completed]"
           taskManagerLocationFuture = {CompletableFuture@10797} "java.util.concurrent.CompletableFuture@2e11ac18[Not completed]"
           state = {ExecutionState@10789} "SCHEDULED"
           assignedResource = {SingleLogicalSlot@10507} 
           failureCause = null
           taskRestore = null
           assignedAllocationID = null
           accumulatorLock = {Object@10798} 
           userAccumulators = null
           ioMetrics = null
           producedPartitions = {LinkedHashMap@10799}  size = 1
          
          
    • 继续回调到 Deploy 阶段设置的回调函数 deployOrHandleError,就是部署

      • private BiFunction<Object, Throwable, Void> deployOrHandleError(final DeploymentHandle deploymentHandle) {
        
           return (ignored, throwable) -> {
              if (executionVertexVersioner.isModified(requiredVertexVersion)) {
        
              if (throwable == null) {
                 deployTaskSafe(executionVertexId); // 在这里部署
              } else {
                 handleTaskDeploymentFailure(executionVertexId, throwable);
              }
              return null;
           };
        }
        
        
      • 回调函数深入调用其他函数

      • DefaultScheduler # deployTaskSafe

      • ExecutionVertex # deploy

      • Execution # deploy。每次调度ExecutionVertex,都会有一个Execution,在此阶段会将Execution的状态变更为DEPLOYING状态,并且为该ExecutionVertex生成对应的部署描述信息,然后从对应的slot中获取对应的TaskManagerGateway,以便向对应的TaskManager提交Task。其中,ExecutionVertex.createDeploymentDescriptor方法中,包含了从Execution Graph到真正物理执行图的转换。如将IntermediateResultPartition转化成ResultPartition,ExecutionEdge转成InputChannelDeploymentDescriptor(最终会在执行时转化成InputGate)。

        • // 这里一个关键点是:Execution 部署时候,是 从 SingleLogicalSlot ---> AllocatedSlot ---> TaskManagerGateway 这个顺序获取了 TaskManager 的 RPC 网关,然后通过 taskManagerGateway.submitTask 才能提交任务的。这样就把 Execution 部署阶段和执行阶段联系起来了
          public void deploy() throws JobException {
          			final TaskDeploymentDescriptor deployment = TaskDeploymentDescriptorFactory
          			.fromExecutionVertex(vertex, attemptNumber)
          				.createDeploymentDescriptor(
          				slot.getAllocationId(),
          					slot.getPhysicalSlotNumber(),
          					taskRestore,
          					producedPartitions.values());
            
              	// 这里就是关键点
            		final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();
            
                // 在这里通过RPC提交task给了TaskManager
            		CompletableFuture.supplyAsync(() -> taskManagerGateway.submitTask(deployment, rpcTimeout), executor).thenCompose(Function.identity())
          }
          
          
    • TaskExecutor # submitTask, 程序执行到 TE,这就是正式执行了。TaskManager(TaskExecutor)在接收到提交Task的请求后,会经过一些初始化(如从BlobServer拉取文件,反序列化作业和Task信息、LibaryCacheManager等),然后这些初始化的信息会用于生成Task(Runnable对象),然后启动该Task,其代码调用路径如下 Task#startTaskThread(启动Task线程)-> Task#run(将ExecutionVertex状态变更为RUNNING状态,此时在FLINK web前台查看顶点状态会变更为RUNNING状态,另外还会生成了一个AbstractInvokable对象,该对象是FLINK衔接执行用户代码的关键。

      • // 这个方法会创建真正的Task,然后调用task.startTaskThread();开始task的执行。
        public CompletableFuture<Acknowledge> submitTask(
              TaskDeploymentDescriptor tdd, JobMasterId jobMasterId, Time timeout) {
          		// taskSlot.getMemoryManager(); 会获取slot的内存管理器,这里就是分割内存的部分功能
          		memoryManager = taskSlotTable.getTaskMemoryManager(tdd.getAllocationId());
          		// 在Task构造函数中,会根据输入的参数,创建InputGate, ResultPartition, ResultPartitionWriter等。
        			Task task = new Task(
        				jobInformation,
        				taskInformation,
        				tdd.getExecutionAttemptId(),
        				tdd.getAllocationId(),
        				tdd.getSubtaskIndex(),
        				tdd.getAttemptNumber(),
        				tdd.getProducedPartitions(),
        				tdd.getInputGates(),
        				tdd.getTargetSlotNumber(),
        				memoryManager,
        				taskExecutorServices.getIOManager(),
        				taskExecutorServices.getShuffleEnvironment(),
        				taskExecutorServices.getKvStateService(),
        				taskExecutorServices.getBroadcastVariableManager(),
        				taskExecutorServices.getTaskEventDispatcher(),
        				taskStateManager,
        				taskManagerActions,
        				inputSplitProvider,
        				checkpointResponder,
        				aggregateManager,
        				blobCacheService,
        				libraryCache,
        				fileCache,
        				taskManagerConfiguration,
        				taskMetricGroup,
        				resultPartitionConsumableNotifier,
        				partitionStateChecker,
        				getRpcService().getExecutor());
          
              taskAdded = taskSlotTable.addTask(task);
          		task.startTaskThread();
        }
        
        
      • 开始了线程了。而startTaskThread方法,则会执行executingThread.start,从而调用Task.run方法。

        • public void startTaskThread() {
             executingThread.start();
          }
          
          
    • 最后会执行到 Task,就是调用用户代码。这里的invokable即为operator对象实例,通过反射创建。具体地,即为OneInputStreamTask,或者SourceStreamTask等。以OneInputStreamTask为例,Task的核心执行代码即为OneInputStreamTask.invoke方法,它会调用StreamTask.run方法,这是个抽象方法,最终会调用其派生类的run方法,即OneInputStreamTask, SourceStreamTask等。

      • // 这里的invokable即为operator对象实例,通过反射创建。
        private void doRun() {
        	AbstractInvokable invokable = null;
        	invokable = loadAndInstantiateInvokable(userCodeClassLoader, nameOfInvokableClass, env);
        	// run the invokable
          invokable.invoke();
        }
        
        
    • tryFulfillSlotRequestOrMakeAvailable

    0x09 Slot发挥作用

    有人可能有一个疑问:Slot分配之后,在运行时候怎么发挥作用呢?

    这里我们就用WordCount示例来看看。

    示例代码就是WordCount。只不过做了一些配置:

    • taskmanager.numberOfTaskSlots 是为了设置有几个taskmanager。
    • 其他是为了调试,加长了心跳时间或者超时时间。
    public class WordCount {
    
        public static void main(String[] args) throws Exception {
    
            Configuration conf = new Configuration();
            conf.setString("heartbeat.timeout", "18000000");
            conf.setString("resourcemanager.job.timeout", "18000000");
            conf.setString("resourcemanager.taskmanager-timeout", "18000000");
            conf.setString("slotmanager.request-timeout", "18000000");
            conf.setString("slotmanager.taskmanager-timeout", "18000000");
            conf.setString("slot.request.timeout", "18000000");
            conf.setString("slot.idle.timeout", "18000000");
            conf.setString("akka.ask.timeout", "18000000");
            conf.setString("taskmanager.numberOfTaskSlots", "1");
    
            final LocalEnvironment env = ExecutionEnvironment.createLocalEnvironment(conf);
            final MultipleParameterTool params = MultipleParameterTool.fromArgs(args);
            env.getConfig().setGlobalJobParameters(params);
    
            // get input data
            DataSet<String> text = null;
            if (params.has("input")) {
                // union all the inputs from text files
                for (String input : params.getMultiParameterRequired("input")) {
                    if (text == null) {
                        text = env.readTextFile(input);
                    } else {
                        text = text.union(env.readTextFile(input));
                    }
                }
            } else {
                // get default test text data
                text = WordCountData.getDefaultTextLineDataSet(env);
            }
    
            DataSet<Tuple2<String, Integer>> counts =
                    // split up the lines in pairs (2-tuples) containing: (word,1)
                    text.flatMap(new Tokenizer())
                            // group by the tuple field "0" and sum up tuple field "1"
                            .groupBy(0)
                            .sum(1);
    
            // emit result
            if (params.has("output")) {
                counts.writeAsCsv(params.get("output"), "
    ", " ");
                env.execute("WordCount Example");
            } else {
                counts.print();
            }
        }
    
        // *************************************************************************
        //     USER FUNCTIONS
        // *************************************************************************
        public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
    
            @Override
            public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
                // normalize and split the line
                String[] tokens = value.toLowerCase().split("\W+");
    
                // emit the pairs
                for (String token : tokens) {
                    if (token.length() > 0) {
                        out.collect(new Tuple2<>(token, 1));
                    }
                }
            }
        }
    }
    

    9.1 部署阶段

    这里 Slot 起到了一个承接作用,把具体提交部署和执行阶段联系起来

    前面提到,当TE 提交一个Slot之后,RM会在这个Slot上提交Task。具体逻辑如下:

    每次调度ExecutionVertex,都会有一个Execution。在 Execution # deploy 函数中。

    • 会将Execution的状态变更为DEPLOYING状态,并且为该ExecutionVertex生成对应的部署描述信息。其中,ExecutionVertex.createDeploymentDescriptor方法中,包含了从Execution Graph到真正物理执行图的转换。
      • 如将IntermediateResultPartition转化成ResultPartition
      • ExecutionEdge转成InputChannelDeploymentDescriptor(最终会在执行时转化成InputGate)。
    • 然后从对应的slot中获取对应的TaskManagerGateway,以便向对应的TaskManager提交Task。这里一个关键点是:Execution 部署时候,是 从 SingleLogicalSlot ---> AllocatedSlot ---> TaskManagerGateway 这个顺序获取了 TaskManager 的 RPC 网关。
    • 最后通过 taskManagerGateway.submitTask 提交 Task。

    具体代码如下:

    // 这里一个关键点是:Execution 部署时候,是 从 SingleLogicalSlot ---> AllocatedSlot ---> TaskManagerGateway 这个顺序获取了 TaskManager 的 RPC 网关,然后通过 taskManagerGateway.submitTask 才能提交任务的。这样就把 Execution 部署阶段和执行阶段联系起来了
    public void deploy() throws JobException {
    			final TaskDeploymentDescriptor deployment = TaskDeploymentDescriptorFactory
    			.fromExecutionVertex(vertex, attemptNumber)
    				.createDeploymentDescriptor(
    				slot.getAllocationId(),
    					slot.getPhysicalSlotNumber(),
    					taskRestore,
    					producedPartitions.values());
    
       	// 这里就是关键点
      		final TaskManagerGateway taskManagerGateway = slot.getTaskManagerGateway();
    
          // 在这里通过RPC提交task给了TaskManager
      		CompletableFuture.supplyAsync(() -> taskManagerGateway.submitTask(deployment, rpcTimeout), executor).thenCompose(Function.identity())
    }
    
    

    9.2 运行阶段

    这里仅以Split为例子说明,Slot在其中也起到了连接作用,用户从Slot中可以得到其 TaskManager 的host,然后Split会根据这个host继续操作

    当 Source 读取输入之后,可能涉及到分割输入,Flink就会进行输入分片的切分。

    9.2.1 FileInputSplit 的由来

    Flink 一般把文件按并行度拆分成FileInputSplit的个数,当然并不是完全有几个并行度就生成几个FileInputSplit对象,根据具体算法得到,但是FileInputSplit个数,一定是(并行度个数,或者并行度个数+1)。因为计算FileInputSplit个数时,参照物是文件大小 / 并行度 ,如果没有余数,刚好整除,那么FileInputSplit个数一定是并行度,如果有余数,FileInputSplit个数就为是(并行度个数,或者并行度个数+1)。

    Flink在生成阶段,会把JobVertex 转化为ExecutionJobVertex,调用new ExecutionJobVertex(),ExecutionJobVertex中存了inputSplits,所以会根据并行并来计算inputSplits的个数。

    ExecutionJobVertex 构造函数中有如下代码,这些代码作用是生成 InputSplit,赋值到 ExecutionJobVertex 的成员变量 inputSplits 中,这样就知道了从哪里得倒 Split:

    // set up the input splits, if the vertex has any
    try {
    			InputSplitSource<InputSplit> splitSource = (InputSplitSource<InputSplit>) jobVertex.getInputSplitSource();
    
    			if (splitSource != null) {
    				try {
    					inputSplits = splitSource.createInputSplits(numTaskVertices);
    					if (inputSplits != null) {
    						splitAssigner = splitSource.getInputSplitAssigner(inputSplits);
    					}
    				} 
    }
                
    // 此时splitSource如下:
    splitSource = {CollectionInputFormat@7603} "[To be, or not to be,--that is the question:--, Whether 'tis nobler in the mind to suffer, The slings and arrows of outrageous fortune, ...]"
     serializer = {StringSerializer@7856} 
     dataSet = {ArrayList@7857}  size = 35
     iterator = null
     partitionNumber = 0
     runtimeContext = null    
    

    9.2.2 File Split

    这里以网上文章Flink-1.10.0中的readTextFile解读内容为例,给大家看看文件切片大致流程。当然他介绍的是Stream类型。

    readTextFile分成两个阶段,一个Source,一个Split Reader。这两个阶段可以分为多个线程,不一定是2个线程。因为Split Reader的并行度时根据配置文件或者启动参数来决定的。

    Source的执行流程如下,Source的是用来构建输入切片的,不做数据的读取操作。这里是按照本地运行模式整理的。

    Task.run()
     |-- invokable.invoke()
     |    |-- StreamTask.invoke()
     |    |    |-- beforeInvoke()
     |    |    |    |-- init()
     |    |    |    |    |-- SourceStreamTask.init()
     |    |    |    |-- initializeStateAndOpen()
     |    |    |    |    |-- operator.initializeState()
     |    |    |    |    |-- operator.open()
     |    |    |    |    |    |-- SourceStreamTask.LegacySourceFunctionThread.run()
     |    |    |    |    |    |    |-- StreamSource.run()
     |    |    |    |    |    |    |    |-- userFunction.run(ctx)
     |    |    |    |    |    |    |    |    |-- ContinuousFileMonitoringFunction.run()
     |    |    |    |    |    |    |    |    |    |-- RebalancePartitioner.selectChannel()
     |    |    |    |    |    |    |    |    |    |-- RecordWriter.emit()
    
    

    Split Reader的代码执行流程如下:

    Task.run()
     |-- invokable.invoke()
     |    |-- StreamTask.invoke()
     |    |    |-- beforeInvoke()
     |    |    |    |-- init()
     |    |    |    |    |--OneInputStreamTask.init()
     |    |    |    |-- initializeStateAndOpen()
     |    |    |    |    |-- operator.initializeState()
     |    |    |    |    |    |-- ContinuousFileReaderOperator.initializeState()
     |    |    |    |    |-- operator.open()
     |    |    |    |    |    |-- ContinuousFileReaderOperator.open()
     |    |    |    |    |    |    |-- ContinuousFileReaderOperator.SplitReader.run()
     |    |    |-- runMailboxLoop()
     |    |    |    |-- StreamTask.processInput()
     |    |    |    |    |-- StreamOneInputProcessor.processInput()
     |    |    |    |    |    |-- StreamTaskNetworkInput.emitNext() while循环不停的处理输入数据
     |    |    |    |    |    |    |-- ContinuousFileReaderOperator.processElement()
     |    |    |-- afterInvoke()    
    
    

    9.2.3 Slot的使用

    针对本文示例,我们重点介绍Slot在其中的使用。

    调用路径如下:

    • DataSourceTask # invoke,此时运行在 TE

    • DataSourceTask # hasNext

      • while (!this.taskCanceled && splitIterator.hasNext())
        
    • RpcInputSplitProvider # getNextInputSplit

      • CompletableFuture<SerializedInputSplit> futureInputSplit = jobMasterGateway.requestNextInputSplit(   jobVertexID,   executionAttemptID);
        
    • RPC

    • 来到 JM

    • JobMaster # requestNextInputSplit

    • SchedulerBase # requestNextInputSplit,这里会从 executionGraph 获取 Execution,然后从 Execution 获取 InputSplit

      • public SerializedInputSplit requestNextInputSplit(JobVertexID vertexID, ExecutionAttemptID executionAttempt) throws IOException {
        
        		final Execution execution = executionGraph.getRegisteredExecutions().get(executionAttempt);
        
        		final ExecutionJobVertex vertex = executionGraph.getJobVertex(vertexID);
        
        		final InputSplit nextInputSplit = execution.getNextInputSplit();
        
        		final byte[] serializedInputSplit = InstantiationUtil.serializeObject(nextInputSplit);
                
        		return new SerializedInputSplit(serializedInputSplit);
        }
        
      • 这里 execution.getNextInputSplit() 就会调用 Slot,可以看到,这里先获取Slot,然后从Slot获取其 TaskManager 的host。再从 Vertiex 获取 InputSplit

        • public InputSplit getNextInputSplit() {
          		final LogicalSlot slot = this.getAssignedResource();
          		final String host = slot != null ? slot.getTaskManagerLocation().getHostname() : null;
          		return this.vertex.getNextInputSplit(host);
          }
          
        • public InputSplit getNextInputSplit(String host) {
          		final int taskId = getParallelSubtaskIndex();
          		synchronized (inputSplits) {
          			final InputSplit nextInputSplit = jobVertex.getSplitAssigner().getNextInputSplit(host, taskId);
          			if (nextInputSplit != null) {
          				inputSplits.add(nextInputSplit);
          			}
          			return nextInputSplit;
          		}
          }
          
          // runtime 信息如下
          inputSplits = {GenericInputSplit[1]@13113} 
           0 = {GenericInputSplit@13121} "GenericSplit (0/1)"
            partitionNumber = 0
            totalNumberOfPartitions = 1
          
    • 回到 SchedulerBase # requestNextInputSplit,返回 return new SerializedInputSplit(serializedInputSplit);

    • RPC

    • 返回 算子 Task,TE,获取到了 InputSplit,就可以继续处理输入。

      • final InputSplit split = splitIterator.next();
        final InputFormat<OT, InputSplit> format = this.format;			
        // open input format
        // open还没开始真正的读数据,只是定位,设置当前切片信息(切片的开始位置,切片长度),和定位开始位置。把第一个换行符,分到前一个分片,自己从第二个换行符开始读取数据
        format.open(split);
        

    0xFF 参考

    一文了解 Apache Flink 的资源管理机制

    Flink5:Flink运行架构(Slot和并行度)

    Flink Slot详解与Job Execution Graph优化

    聊聊flink的slot.request.timeout配置

    Apache Flink 源码解析(三)Flink on Yarn (2) Resource Manager

    Flink on Yarn模式下的TaskManager个数

    Flink on YARN时,如何确定TaskManager数

    Flink】Flink作业调度流程分析

    Flink原理与实现:如何生成ExecutionGraph及物理执行图

    Flink源码走读(一):Flink工程目录

    flink分析使用之七任务的启动

    flink源码解析3 ExecutionGraph的形成与物理执行

    Flink 内部原理之作业与调度

    Flink之用户代码生成调度层图结构

    3. Flink Slot申请

    Flink 任务和调度

    Flink的Slot是如何做到平均划分TM内存的?

    Flink-1.10.0中的readTextFile解读

    Flink1.7.2 Dataset 文件切片计算方式和切片数据读取源码分析

    flink任务提交流程分析

    Flink Parallelism和Slot理解

  • 相关阅读:
    Java 递归算法,遍历文件夹下的所有文件。
    基于appium的移动端自动化测试,密码键盘无法识别问题
    第一个脚印
    最简单ajax,$.post()用法
    关于图片title与alt
    iframe loading 效果
    iframe 跨域的高度自适应
    练习卷动式新闻广告牌
    JS学习笔记《数值与字符串相加篇》
    解决FLASH的层级问题
  • 原文地址:https://www.cnblogs.com/rossiXYZ/p/13554156.html
Copyright © 2020-2023  润新知