• kNN之手写数字识别


    import numpy as np
    # listdir()列出给定目录的文件名
    from os import listdir
    import operator
    
    
    # inX-分类的输入向量,dataSet-输入的训练样本集,labels-标签向量,k-近邻数
    def classify0(inX, dataSet, labels, k):
        dataSetSize = dataSet.shape[0]  # 得到训练集的行数,即样本个数
        # 以下三行距离计算计算
        # print("样本个数:",dataSetSize)
        diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet  # tile():拉伸copy
        # 将输入的测试样本沿行方向扩充为(4,2),减去训练样本的坐标,得到各自的距离
        # print("变形:",diffMat)
        sqDiffMat = diffMat ** 2  # 欧式距离平方
        sqDistances = sqDiffMat.sum(axis=1)  # 欧式距离求和
        distances = sqDistances ** 0.5  # 开方
        sortedDistIndicies = distances.argsort()  # 按distances中的数值大小依次返回索引给y
        # print("索引顺序:",sortedDistIndicies)
        classCount = {}
        # 以下两行选择距离最小的k个点
        for i in range(k):
            voteIlabel = labels[sortedDistIndicies[i]]
            classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
            # 0:{labels[2]="B","B":1} 1:("B":2) 2:("A":1)
            # get():返回指定键的值,如果值不在字典中返回默认值(此处设为0)
        # 排序
        # print("classCount.items():",classCount.items())
        sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
        # operator.itemgetter(x):定义函数,获取对象的第x个域的值
        # key为函数,指定取待排序元素的哪一项进行排序
        # reverse = True 从大到小排序
        # print("sortedClassCount:",sortedClassCount)
        return sortedClassCount[0][0]
    
    
    # 将图像转换为向量
    def img2vector(filename):
        returnVect = np.zeros(1024)
        fr = open(filename)
        for i in range(32):
            lineStr = fr.readline()
            for j in range(32):
                returnVect[32 * i + j] = int(lineStr[j])  # 把逐行读取到的单行的每一项依次赋给
        return returnVect
    
    
    def handwriteClassTest():
        hwLabels = []
        trainingFileList = listdir("trainingDigits")
        m = len(trainingFileList)  # 文件个数
        trainingMat = np.zeros((m, 1024))  # m个样本,每个样本1024个数据
        for i in range(m):
            # 以下三行从文件名解析分类数字
            fileNameStr = trainingFileList[i]  # 获取文件名
            fileStr = fileNameStr.split('.')[0]  # 文件名去后缀
            classNumStr = int(fileStr.split('_')[0])  # 获取文件数据所表示的值
            hwLabels.append(classNumStr)
            # 用样本值替换全0数组
            trainingMat[i, :] = img2vector('trainingDigits/%s' % fileNameStr)
        testFileList = listdir('testDigits')
        errorCount = 0.0
        mTest = len(testFileList)
        for i in range(mTest):
            fileNameStr = testFileList[i]
            fileStr = fileNameStr.split('.')[0]
            classNumStr = int(fileStr.split('_')[0])
            vectorUnderTest = img2vector('testDigits/%s'% fileNameStr)
            classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
            print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr))
            if (classifierResult != classNumStr):
                errorCount += 1.0
            print("
    the total number of errors is: %d" % errorCount)
        print("
    the total error rate is: %f" % (errorCount / float(mTest)))
    
    
    if __name__ == "__main__":
        handwriteClassTest()
  • 相关阅读:
    python自省函数getattr的用法
    python-mysqldb安装
    weblogic部署脚本
    netcat使用
    ssh批量互信脚本
    yum安装出错
    centos文件误删除恢复
    lamp php的ssl,ssh支持
    ssh免密码登陆
    python 学习笔记 四 条件, 循环以及其他
  • 原文地址:https://www.cnblogs.com/roscangjie/p/10802202.html
Copyright © 2020-2023  润新知