• mask_rcnn训练自己的数据集


    1、首先从官方下载mask_rcnn源码https://github.com/matterport/Mask_RCNN

    2、当制作自己的数据集的时候,图片的大小一定要记得修改,长宽都要修改为修改为2的6次方的倍数,不然训练的时候会报错,来看源代码:

    2、首先将demo.ipynb转换成demo.py,这里我顺便更改为适用于我自己数据集:

    import os
    import sys
    import random
    import math
    import numpy as np
    import skimage.io
    import matplotlib
    import matplotlib.pyplot as plt
    import cv2
    import time
    from mrcnn.config import Config
    from datetime import datetime
    # Root directory of the project
    ROOT_DIR = os.path.abspath("../")
    
    # Import Mask RCNN
    sys.path.append(ROOT_DIR)  # To find local version of the library
    from mrcnn import utils
    import mrcnn.model as modellib
    from mrcnn import visualize
    # Import COCO config
    sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))  # To find local version
    import coco
    
    
    # Directory to save logs and trained model
    MODEL_DIR = os.path.join(ROOT_DIR, "logs/shapes20190425T0816")
    
    # Local path to trained weights file
    COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_shapes_0030.h5")
    # Download COCO trained weights from Releases if needed
    if not os.path.exists(COCO_MODEL_PATH):
        utils.download_trained_weights(COCO_MODEL_PATH)
        print("cuiwei***********************")
    
    # Directory of images to run detection on
    IMAGE_DIR = os.path.join(ROOT_DIR, "images")
    class ShapesConfig(Config):
        """Configuration for training on the toy shapes dataset.
        Derives from the base Config class and overrides values specific
        to the toy shapes dataset.
        """
        # Give the configuration a recognizable name
        NAME = "shapes"
    
        # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
        # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1
    
        # Number of classes (including background)
        NUM_CLASSES = 1 + 4  # background + 3 shapes
    
        # Use small images for faster training. Set the limits of the small side
        # the large side, and that determines the image shape.
        IMAGE_MIN_DIM = 320
        IMAGE_MAX_DIM = 384
    
        # Use smaller anchors because our image and objects are small
        RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6)  # anchor side in pixels
    
        # Reduce training ROIs per image because the images are small and have
        # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
        TRAIN_ROIS_PER_IMAGE =100
    
        # Use a small epoch since the data is simple
        STEPS_PER_EPOCH = 100
    
        # use small validation steps since the epoch is small
        VALIDATION_STEPS = 50
    
    class InferenceConfig(ShapesConfig):
        # Set batch size to 1 since we'll be running inference on
        # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1
    
    config = InferenceConfig()
    config.display()
    
    
    # Create model object in inference mode.
    model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
    
    # Load weights trained on MS-COCO
    model.load_weights(COCO_MODEL_PATH, by_name=True)
    
    # COCO Class names
    # Index of the class in the list is its ID. For example, to get ID of
    # the teddy bear class, use: class_names.index('teddy bear')
    class_names = ['BG', 'a','b','c','e']
    # Load a random image from the images folder
    #file_names = next(os.walk(IMAGE_DIR))[2]
    #image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
    cap = cv2.VideoCapture(0)
    
    while(1):
        # get a frame
        ret, frame = cap.read()
        # show a frame
        start =time.clock()
        results = model.detect([frame], verbose=1)
        r = results[0]
        #cv2.imshow("capture", frame)
        visualize.display_instances(frame, r['rois'], r['masks'], r['class_ids'], 
                                class_names, r['scores'])
        end = time.clock()
        print(end-start)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    cap.release()
    cv2.destroyAllWindows() 
    
    #image= cv2.imread("C:\Users\18301\Desktop\Mask_RCNN-master\images\9.jpg")
    ## Run detection
    #
    #results = model.detect([image], verbose=1)
    #
    #print(end-start)
    ## Visualize results
    #r = results[0]
    #visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], 
    #                            class_names, r['scores'])

    以上这段代码可以调用摄像头拍摄图片进行目标识别。

     

    以下为训练文件:

    # -*- coding: utf-8 -*-
    
    import os
    import sys
    import random
    import math
    import re
    import time
    import numpy as np
    import cv2
    import matplotlib
    import matplotlib.pyplot as plt
    import tensorflow as tf
    from mrcnn.config import Config
    #import utils
    from mrcnn import model as modellib,utils
    from mrcnn import visualize
    import yaml
    from mrcnn.model import log
    from PIL import Image
    
    
    #os.environ["CUDA_VISIBLE_DEVICES"] = "0"
    # Root directory of the project
    ROOT_DIR = os.getcwd()
    
    #ROOT_DIR = os.path.abspath("../")
    # Directory to save logs and trained model
    MODEL_DIR = os.path.join(ROOT_DIR, "logs")
    
    iter_num=0
    
    # Local path to trained weights file
    COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
    # Download COCO trained weights from Releases if needed
    if not os.path.exists(COCO_MODEL_PATH):
        utils.download_trained_weights(COCO_MODEL_PATH)
    
    
    class ShapesConfig(Config):
        """Configuration for training on the toy shapes dataset.
        Derives from the base Config class and overrides values specific
        to the toy shapes dataset.
        """
        # Give the configuration a recognizable name
        NAME = "shapes"
    
        # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
        # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1
    
        # Number of classes (including background)
        NUM_CLASSES = 1 + 4  # background + 3 shapes
    
        # Use small images for faster training. Set the limits of the small side
        # the large side, and that determines the image shape.
        IMAGE_MIN_DIM = 320
        IMAGE_MAX_DIM = 384
    
        # Use smaller anchors because our image and objects are small
        RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6)  # anchor side in pixels
    
        # Reduce training ROIs per image because the images are small and have
        # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
        TRAIN_ROIS_PER_IMAGE = 100
    
        # Use a small epoch since the data is simple
        STEPS_PER_EPOCH = 100
    
        # use small validation steps since the epoch is small
        VALIDATION_STEPS = 50
    
    
    config = ShapesConfig()
    config.display()
    
    class DrugDataset(utils.Dataset):
        # 得到该图中有多少个实例(物体)
        def get_obj_index(self, image):
            n = np.max(image)
            return n
    
        # 解析labelme中得到的yaml文件,从而得到mask每一层对应的实例标签
        def from_yaml_get_class(self, image_id):
            info = self.image_info[image_id]
            with open(info['yaml_path']) as f:
                temp = yaml.load(f.read())
                labels = temp['label_names']
                del labels[0]
            return labels
    
        # 重新写draw_mask
        def draw_mask(self, num_obj, mask, image,image_id):
            #print("draw_mask-->",image_id)
            #print("self.image_info",self.image_info)
            info = self.image_info[image_id]
            #print("info-->",info)
            #print("info[width]----->",info['width'],"-info[height]--->",info['height'])
            for index in range(num_obj):
                for i in range(info['width']):
                    for j in range(info['height']):
                        #print("image_id-->",image_id,"-i--->",i,"-j--->",j)
                        #print("info[width]----->",info['width'],"-info[height]--->",info['height'])
                        at_pixel = image.getpixel((i, j))
                        if at_pixel == index + 1:
                            mask[j, i, index] = 1
            return mask
    
        # 重新写load_shapes,里面包含自己的自己的类别
        # 并在self.image_info信息中添加了path、mask_path 、yaml_path
        # yaml_pathdataset_root_path = "/tongue_dateset/"
        # img_floder = dataset_root_path + "rgb"
        # mask_floder = dataset_root_path + "mask"
        # dataset_root_path = "/tongue_dateset/"
        def load_shapes(self, count, img_floder, mask_floder, imglist, dataset_root_path):
            """Generate the requested number of synthetic images.
            count: number of images to generate.
            height,  the size of the generated images.
            """
            # Add classes
            self.add_class("shapes", 1, "a") 
            self.add_class("shapes", 2, "b")
            self.add_class("shapes", 3, "c")
            self.add_class("shapes", 4, "e")
            for i in range(count):
                # 获取图片宽和高
    
                filestr = imglist[i].split(".")[0]
                #print(imglist[i],"-->",cv_img.shape[1],"--->",cv_img.shape[0])
                #print("id-->", i, " imglist[", i, "]-->", imglist[i],"filestr-->",filestr)
                # filestr = filestr.split("_")[1]
                mask_path = mask_floder + "/" + filestr + ".png"
                yaml_path = dataset_root_path + "labelme_json/" + filestr + "_json/info.yaml"
                print(dataset_root_path + "labelme_json/" + filestr + "_json/img.png")
                cv_img = cv2.imread(dataset_root_path + "labelme_json/" + filestr + "_json/img.png")
    
                self.add_image("shapes", image_id=i, path=img_floder + "/" + imglist[i],
                               width=cv_img.shape[1], height=cv_img.shape[0], mask_path=mask_path, yaml_path=yaml_path)
    
        # 重写load_mask
        def load_mask(self, image_id):
            """Generate instance masks for shapes of the given image ID.
            """
            global iter_num
            print("image_id",image_id)
            info = self.image_info[image_id]
            count = 1  # number of object
            img = Image.open(info['mask_path'])
            num_obj = self.get_obj_index(img)
            mask = np.zeros([info['height'], info['width'], num_obj], dtype=np.uint8)
            mask = self.draw_mask(num_obj, mask, img,image_id)
            occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8)
            for i in range(count - 2, -1, -1):
                mask[:, :, i] = mask[:, :, i] * occlusion
    
                occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i]))
            labels = []
            labels = self.from_yaml_get_class(image_id)
            labels_form = []
            for i in range(len(labels)):
                if labels[i].find("a") != -1:
                    labels_form.append("a")
                elif labels[i].find("b") != -1:
                    labels_form.append("b")
                elif labels[i].find("c") != -1:
                    labels_form.append("c")
                elif labels[i].find("e") != -1:
                    labels_form.append("e")
            class_ids = np.array([self.class_names.index(s) for s in labels_form])
            return mask, class_ids.astype(np.int32)
    
    def get_ax(rows=1, cols=1, size=8):
        """Return a Matplotlib Axes array to be used in
        all visualizations in the notebook. Provide a
        central point to control graph sizes.
    
        Change the default size attribute to control the size
        of rendered images
        """
        _, ax = plt.subplots(rows, cols, figsize=(size * cols, size * rows))
        return ax
    
    #基础设置
    dataset_root_path="train_data/"
    img_floder = dataset_root_path + "pic"
    mask_floder = dataset_root_path + "cv2_mask"
    #yaml_floder = dataset_root_path
    imglist = os.listdir(img_floder)
    count = len(imglist)
    
    #train与val数据集准备
    dataset_train = DrugDataset()
    dataset_train.load_shapes(count, img_floder, mask_floder, imglist,dataset_root_path)
    dataset_train.prepare()
    
    #print("dataset_train-->",dataset_train._image_ids)
    
    dataset_val = DrugDataset()
    dataset_val.load_shapes(7, img_floder, mask_floder, imglist,dataset_root_path)
    dataset_val.prepare()
    
    #print("dataset_val-->",dataset_val._image_ids)
    
    # Load and display random samples
    #image_ids = np.random.choice(dataset_train.image_ids, 4)
    #for image_id in image_ids:
    #    image = dataset_train.load_image(image_id)
    #    mask, class_ids = dataset_train.load_mask(image_id)
    #    visualize.display_top_masks(image, mask, class_ids, dataset_train.class_names)
    
    # Create model in training mode
    model = modellib.MaskRCNN(mode="training", config=config,
                              model_dir=MODEL_DIR)
    
    # Which weights to start with?
    init_with = "coco"  # imagenet, coco, or last
    
    if init_with == "imagenet":
        model.load_weights(model.get_imagenet_weights(), by_name=True)
    elif init_with == "coco":
        # Load weights trained on MS COCO, but skip layers that
        # are different due to the different number of classes
        # See README for instructions to download the COCO weights
        model.load_weights(COCO_MODEL_PATH, by_name=True,
                           exclude=["mrcnn_class_logits", "mrcnn_bbox_fc",
                                    "mrcnn_bbox", "mrcnn_mask"])
    elif init_with == "last":
        # Load the last model you trained and continue training
        model.load_weights(model.find_last()[1], by_name=True)
    
    # Train the head branches
    # Passing layers="heads" freezes all layers except the head
    # layers. You can also pass a regular expression to select
    # which layers to train by name pattern.
    model.train(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE,
                epochs=10,
                layers='heads')
    
    
    
    # Fine tune all layers
    # Passing layers="all" trains all layers. You can also
    # pass a regular expression to select which layers to
    # train by name pattern.
    model.train(dataset_train, dataset_val,
                learning_rate=config.LEARNING_RATE / 10,
                epochs=30,
                layers="all")

    以下为测试代码:

    # -*- coding: utf-8 -*-
    
    
    import os
    import sys
    import random
    import math
    import numpy as np
    import skimage.io
    import matplotlib
    import matplotlib.pyplot as plt
    import cv2
    import time
    from mrcnn.config import Config
    from datetime import datetime 
    # Root directory of the project
    ROOT_DIR = os.getcwd()
    
    # Import Mask RCNN
    sys.path.append(ROOT_DIR)  # To find local version of the library
    from mrcnn import utils
    import mrcnn.model as modellib
    from mrcnn import visualize
    # Import COCO config
    sys.path.append(os.path.join(ROOT_DIR, "samples/coco/"))  # To find local version
    from samples.coco import coco
    
    
    # Directory to save logs and trained model
    MODEL_DIR = os.path.join(ROOT_DIR, "logs/shapes20190425T0816/")
    
    # Local path to trained weights file
    COCO_MODEL_PATH = os.path.join(MODEL_DIR ,"mask_rcnn_shapes_0030.h5")
    # Download COCO trained weights from Releases if needed
    if not os.path.exists(COCO_MODEL_PATH):
        utils.download_trained_weights(COCO_MODEL_PATH)
        print("wancheng***********************")
    
    # Directory of images to run detection on
    IMAGE_DIR = os.path.join(ROOT_DIR, "images")
    
    class ShapesConfig(Config):
        """Configuration for training on the toy shapes dataset.
        Derives from the base Config class and overrides values specific
        to the toy shapes dataset.
        """
        # Give the configuration a recognizable name
        NAME = "shapes"
    
        # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
        # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1
    
        # Number of classes (including background)
        NUM_CLASSES = 1 + 4 # background + 3 shapes
    
        # Use small images for faster training. Set the limits of the small side
        # the large side, and that determines the image shape.
        IMAGE_MIN_DIM = 320
        IMAGE_MAX_DIM = 384
    
        # Use smaller anchors because our image and objects are small
        RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6)  # anchor side in pixels
    
        # Reduce training ROIs per image because the images are small and have
        # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
        TRAIN_ROIS_PER_IMAGE =100
    
        # Use a small epoch since the data is simple
        STEPS_PER_EPOCH = 100
    
        # use small validation steps since the epoch is small
        VALIDATION_STEPS = 50
    
    #import train_tongue
    #class InferenceConfig(coco.CocoConfig):
    class InferenceConfig(ShapesConfig):
        # Set batch size to 1 since we'll be running inference on
        # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
        GPU_COUNT = 1
        IMAGES_PER_GPU = 1
    
    config = InferenceConfig()
    
    model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
    
    
    # Create model object in inference mode.
    model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
    
    # Load weights trained on MS-COCO
    model.load_weights(COCO_MODEL_PATH, by_name=True)
    
    # COCO Class names
    # Index of the class in the list is its ID. For example, to get ID of
    # the teddy bear class, use: class_names.index('teddy bear')
    class_names = ['BG', 'a','b','c','e']
    # Load a random image from the images folder
    file_names = next(os.walk(IMAGE_DIR))[2]
    image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
    
    a=datetime.now() 
    # Run detection
    results = model.detect([image], verbose=1)
    b=datetime.now() 
    # Visualize results
    print("shijian",(b-a).seconds)
    r = results[0]
    visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], 
                                class_names, r['scores'])
    # Load a random image from the images folder
    #file_names = next(os.walk(IMAGE_DIR))[2]
    #image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
    #cap = cv2.VideoCapture(0)
    #
    #while(1):
    #    # get a frame
    #    ret, frame = cap.read()
    #    # show a frame
    #    start =time.clock()
    #    results = model.detect([frame], verbose=1)
    #    r = results[0]
    #    #cv2.imshow("capture", frame)
    #    visualize.display_instances(frame, r['rois'], r['masks'], r['class_ids'], 
    #                            class_names, r['scores'])
    #    end = time.clock()
    #    print(end-start)
    #    if cv2.waitKey(1) & 0xFF == ord('q'):
    #        break
    #
    #cap.release()
    #cv2.destroyAllWindows() 
    
    #image= cv2.imread("C:\Users\18301\Desktop\Mask_RCNN-master\images\9.jpg")
    ## Run detection
    #
    #results = model.detect([image], verbose=1)
    #
    #print(end-start)
    ## Visualize results
    #r = results[0]
    #visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], 
    #                            class_names, r['scores'])
    
     
    
    ## Root directory of the project
    #ROOT_DIR = os.getcwd()
    #
    ## Directory to save logs and trained model
    #MODEL_DIR = os.path.join(ROOT_DIR, "logs/shapes20180713T1554")
    #
    ## Local path to trained weights file
    #COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
    ## Download COCO trained weights from Releases if needed
    #if not os.path.exists(COCO_MODEL_PATH):
    #    utils.download_trained_weights(COCO_MODEL_PATH)
    #
    ## Directory of images to run detection on
    #IMAGE_DIR = os.path.join(ROOT_DIR, "images")
    #
    #class ShapesConfig(Config):
    #    """Configuration for training on the toy shapes dataset.
    #    Derives from the base Config class and overrides values specific
    #    to the toy shapes dataset.
    #    """
    #    # Give the configuration a recognizable name
    #    NAME = "shapes"
    #
    #    # Train on 1 GPU and 8 images per GPU. We can put multiple images on each
    #    # GPU because the images are small. Batch size is 8 (GPUs * images/GPU).
    #    GPU_COUNT = 1
    #    IMAGES_PER_GPU = 1
    #
    #    # Number of classes (including background)
    #    NUM_CLASSES = 1 + 1  # background + 3 shapes
    #
    #    # Use small images for faster training. Set the limits of the small side
    #    # the large side, and that determines the image shape.
    #    IMAGE_MIN_DIM = 320
    #    IMAGE_MAX_DIM = 384
    #
    #    # Use smaller anchors because our image and objects are small
    #    RPN_ANCHOR_SCALES = (8 * 6, 16 * 6, 32 * 6, 64 * 6, 128 * 6)  # anchor side in pixels
    #
    #    # Reduce training ROIs per image because the images are small and have
    #    # few objects. Aim to allow ROI sampling to pick 33% positive ROIs.
    #    TRAIN_ROIS_PER_IMAGE =100
    #
    #    # Use a small epoch since the data is simple
    #    STEPS_PER_EPOCH = 100
    #
    #    # use small validation steps since the epoch is small
    #    VALIDATION_STEPS = 50
    #
    ##import train_tongue
    ##class InferenceConfig(coco.CocoConfig):
    #class InferenceConfig(ShapesConfig):
    #    # Set batch size to 1 since we'll be running inference on
    #    # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
    #    GPU_COUNT = 1
    #    IMAGES_PER_GPU = 1
    #
    #config = InferenceConfig()
    #
    #model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config)
    #
    ## Load weights trained on MS-COCO
    ## model.load_weights(COCO_MODEL_PATH, by_name=True)
    #model_path = model.find_last()[0]
    #
    ## Load trained weights (fill in path to trained weights here)
    #assert model_path != "", "Provide path to trained weights"
    #print("Loading weights from ", model_path)
    #model.load_weights(model_path, by_name=True)
    #
    #class_names = ['BG', 'tank']
    #
    ## Load a random image from the images folder
    #file_names = next(os.walk(IMAGE_DIR))[2]
    #image = skimage.io.imread(os.path.join(IMAGE_DIR, random.choice(file_names)))
    #
    ## Run detection
    #results = model.detect([image], verbose=1)
    #
    ## Visualize results
    #r = results[0]
    #visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], 
    #                            class_names, r['scores'])

    修改代码中的路径及数据集即可正常训练出自己的数据集

  • 相关阅读:
    vue store状态存储管理
    Git分支管理
    oracle事务不能回滚的原因
    vue教程(四)--其他实用用法补充
    vue教程(三)-slotkeep-alive的使用
    vue教程(二)--过滤器和监视改动功能
    vue教程(一)-html使用vue
    Linux后台命令导入MySQL语句
    CentOS6下的ElasticSearch运行步骤
    浅谈JAVA代码优化
  • 原文地址:https://www.cnblogs.com/roscangjie/p/10770667.html
Copyright © 2020-2023  润新知