• ZOJ


    题目要对每次询问将一个树形图的三个点连接,输出最短距离。

    利用tarjan离线算法,算出每次询问的任意两个点的最短公共祖先,并在dfs过程中求出离根的距离。把每次询问的三个点两两求出最短距离,这样最终结果就是3个值一半。

    其实开始我用的一种很挫的方法才AC的,具体思路就不说了,感觉很麻烦又不好写的样子。怎么没想到上面的简便方法呢。

    初始代码:

      1 #include <iostream>
      2 #include <sstream>
      3 #include <cstdio>
      4 #include <climits>
      5 #include <cstring>
      6 #include <cstdlib>
      7 #include <string>
      8 #include <stack>
      9 #include <map>
     10 #include <cmath>
     11 #include <vector>
     12 #include <queue>
     13 #include <algorithm>
     14 #define esp 1e-6
     15 #define pi acos(-1.0)
     16 #define pb push_back
     17 #define lson l, m, rt<<1
     18 #define rson m+1, r, rt<<1|1
     19 #define mp(a, b) make_pair((a), (b))
     20 #define in  freopen("in.txt", "r", stdin);
     21 #define out freopen("out.txt", "w", stdout);
     22 #define print(a) printf("%d
    ",(a));
     23 #define bug puts("********))))))");
     24 #define stop  system("pause");
     25 #define Rep(i, c) for(__typeof(c.end()) i = c.begin(); i != c.end(); i++)
     26 #define inf 0x0f0f0f0f
     27 
     28 using namespace std;
     29 typedef long long  LL;
     30 typedef vector<int> VI;
     31 typedef pair<int, int> pii;
     32 typedef vector<pii> VII;
     33 typedef vector<pii, int> VIII;
     34 typedef VI:: iterator IT;
     35 const int maxn = 50000 + 1000;
     36 const int maxm = (70000 + 1000) * 3;
     37 int dis[maxn], lin[maxm][3], vis[maxn], pa[maxn];
     38 VII g[maxn];
     39 VII query[maxn];
     40 int n, m;
     41 int findset(int x)
     42 {
     43     return pa[x] == x? x : pa[x] = findset(pa[x]);
     44 }
     45 void tarjan(int u)
     46 {
     47     vis[u] = 1;
     48     pa[u] = u;
     49     for(int i = 0; i < (int)query[u].size(); i++)
     50     {
     51         int v= query[u][i].first;
     52         if(vis[v])
     53         {
     54             lin[query[u][i].second][2] = findset(v);
     55         }
     56     }
     57     for(int i = 0; i < (int)g[u].size(); i++)
     58     {
     59         int v = g[u][i].second;
     60         if(!vis[v])
     61         {
     62             dis[v] = dis[u] + g[u][i].first;
     63             tarjan(v);
     64             pa[v] = u;
     65         }
     66     }
     67 }
     68 void Init(void)
     69 {
     70     for(int i = 0; i < maxn; i++)
     71         query[i].clear(), g[i].clear();
     72     memset(vis, 0, sizeof(vis));
     73 }
     74 int main(void)
     75 {
     76     int flag = 0;
     77     while(scanf("%d", &n) == 1)
     78     {
     79         if(flag) puts("");
     80         else flag = 1;
     81         Init();
     82         for(int i = 1; i < n; i++)
     83         {
     84             int u, v, len;
     85             scanf("%d%d%d", &u, &v, &len);
     86             g[u].pb(mp(len, v));
     87             g[v].pb(mp(len, u));
     88         }
     89         scanf("%d", &m);
     90         for(int i = 1; i <= 3*m; i += 3)
     91         {
     92             int x, y, z;
     93             scanf("%d%d%d", &x, &y, &z);
     94             query[lin[i][0] = x].pb(mp(lin[i][1] = y, i));
     95             query[lin[i][1]].pb(mp(lin[i][0], i));
     96             query[lin[i+1][0] = x].pb(mp(lin[i+1][1] = z, i+1));
     97             query[lin[i+1][1]].pb(mp(lin[i+1][0], i+1));
     98             query[lin[i+2][0] = y].pb(mp(lin[i+2][1] = z, i+2));
     99             query[lin[i+2][1]].pb(mp(lin[i+2][0], i+2));
    100         }
    101         dis[0] = 0;
    102         tarjan(0);
    103         for(int i = 1; i <= 3*m; i += 3)
    104         {
    105             int ans;
    106             if(lin[i+1][2] ==  lin[i+2][2])
    107             {
    108 //                if(lin[i+2][2] == 0)
    109 //                ans = dis[lin[i][0]] + dis[lin[i][1]] - 2 * dis[lin[i][2]] + dis[lin[i][2]] + dis[lin[i+1][1]];
    110                 ans = dis[lin[i][0]] + dis[lin[i][1]] - 2 * dis[lin[i][2]] - 2*dis[lin[i+1][2]] + dis[lin[i+1][1]] + dis[lin[i][2]];
    111             }
    112             else
    113                 ans = dis[lin[i][0]] + dis[lin[i][1]] - 2 * dis[lin[i][2]] + dis[lin[i+1][1]]- max(dis[lin[i+1][2]], dis[lin[i+2][2]]);
    114             printf("%d
    ",ans);
    115         }
    116     }
    117     return 0;
    118 }
    View Code

    简便方法的代码:

      1 #include <iostream>
      2 #include <sstream>
      3 #include <cstdio>
      4 #include <climits>
      5 #include <cstring>
      6 #include <cstdlib>
      7 #include <string>
      8 #include <stack>
      9 #include <map>
     10 #include <cmath>
     11 #include <vector>
     12 #include <queue>
     13 #include <algorithm>
     14 #define esp 1e-6
     15 #define pi acos(-1.0)
     16 #define pb push_back
     17 #define lson l, m, rt<<1
     18 #define rson m+1, r, rt<<1|1
     19 #define mp(a, b) make_pair((a), (b))
     20 #define in  freopen("in.txt", "r", stdin);
     21 #define out freopen("out.txt", "w", stdout);
     22 #define print(a) printf("%d
    ",(a));
     23 #define bug puts("********))))))");
     24 #define stop  system("pause");
     25 #define Rep(i, c) for(__typeof(c.end()) i = c.begin(); i != c.end(); i++)
     26 #define inf 0x0f0f0f0f
     27 
     28 using namespace std;
     29 typedef long long  LL;
     30 typedef vector<int> VI;
     31 typedef pair<int, int> pii;
     32 typedef vector<pii> VII;
     33 typedef vector<pii, int> VIII;
     34 typedef VI:: iterator IT;
     35 const int maxn = 50000 + 100;
     36 const int maxm = (70000 + 100) * 3;
     37 int dis[maxn], lin[maxm][3], vis[maxn], pa[maxn];
     38 VII g[maxn];
     39 VII query[maxn];
     40 int ans[maxm];
     41 int n, m;
     42 int findset(int x)
     43 {
     44     return pa[x] == x? x : pa[x] = findset(pa[x]);
     45 }
     46 void tarjan(int u)
     47 {
     48     vis[u] = 1;
     49     pa[u] = u;
     50     for(int i = 0; i < (int)query[u].size(); i++)
     51     {
     52         int v= query[u][i].first;
     53         if(vis[v])
     54         {
     55             ans[query[u][i].second] += dis[u] + dis[v] - 2 * dis[findset(v)];
     56         }
     57     }
     58     for(int i = 0; i < (int)g[u].size(); i++)
     59     {
     60         int v = g[u][i].second;
     61         if(!vis[v])
     62         {
     63             dis[v] = dis[u] + g[u][i].first;
     64             tarjan(v);
     65             pa[v] = u;
     66         }
     67     }
     68 }
     69 void Init(void)
     70 {
     71     for(int i = 0; i < maxn; i++)
     72         query[i].clear(), g[i].clear();
     73     memset(vis, 0, sizeof(vis));
     74     memset(ans, 0, sizeof(ans));
     75 }
     76 int main(void)
     77 {
     78     int flag = 0;
     79     while(scanf("%d", &n) == 1)
     80     {
     81         if(flag) puts("");
     82         else flag = 1;
     83         Init();
     84         for(int i = 1; i < n; i++)
     85         {
     86             int u, v, len;
     87             scanf("%d%d%d", &u, &v, &len);
     88             g[u].pb(mp(len, v));
     89             g[v].pb(mp(len, u));
     90         }
     91         scanf("%d", &m);
     92         for(int i = 1; i <= m; i++)
     93         {
     94             int x, y, z;
     95             scanf("%d%d%d", &x, &y, &z);
     96             query[x].pb(mp(y, i));
     97             query[y].pb(mp(x, i));
     98             query[x].pb(mp(z, i));
     99             query[z].pb(mp(x, i));
    100             query[y].pb(mp(z, i));
    101             query[z].pb(mp(y, i));
    102         }
    103         dis[0] = 0;
    104         tarjan(0);
    105         for(int i = 1; i <= m; i++)
    106         {
    107             printf("%d
    ", ans[i]>>1);
    108         }
    109     }
    110     return 0;
    111 }
    View Code
  • 相关阅读:
    java读取文件并获得文件编码,转换为指定编码的工具类代码
    OpenStreetMap地图数据介绍(转)
    字符串匹配的KMP算法(转)
    Dijkstra算法求最短路径(java)(转)
    用java解析在OpenStreetMap上下载的地图数据(SAX版,适合比较大的xml文件)
    用java解析在OpenStreetMap上下载的地图数据
    加载依赖的jar包在命令行编译和运行java文件
    CentOS 加载/挂载 U盘 (转)
    MongoDB:如何正常关闭服务(转)
    JTS(Geometry)(转)
  • 原文地址:https://www.cnblogs.com/rootial/p/3365391.html
Copyright © 2020-2023  润新知