#!/usr/bin/env python import baostock as bs import pandas as pd import time import os import shutil import multiprocessing def download_factor(start_date, end_date, stock_df): rs_list = [] result_factor = pd.DataFrame() for code in stock_df["code"]: # print("Downloading factor start:" + code,threading.current_thread().name) rs_factor = bs.query_adjust_factor(code=code, start_date=start_date, end_date=end_date) # print(rs_factor,"Downloading factor mid:" + code, threading.current_thread().name) while (rs_factor.error_code == '0') & rs_factor.next(): rs_list.append(rs_factor.get_row_data()) result_factor = pd.DataFrame(rs_list, columns=rs_factor.fields) # print("Downloading factor end:" + code, threading.current_thread().name) # print(result_factor) # print("Downloading factor end:" , threading.current_thread().name) return result_factor def download_data(start_date,end_date,code): # 获取指定日期的指数、股票数据 data_df = pd.DataFrame() #print("Downloading :" + code) k_rs = bs.query_history_k_data_plus(code, "date,code,open,high,low,close,volume,amount,turn,pctChg,peTTM,pbMRQ,psTTM,pcfNcfTTM", start_date=start_date, end_date=end_date,adjustflag= "2",frequency="d") data_df = data_df.append(k_rs.get_data()) return data_df def conpare_list(): stock_rs = bs.query_all_stock(end_date) stock_df = stock_rs.get_data() file_name = pathsave + "\" + "all.csv" print(file_name) stock_read = pd.read_csv(file_name) print(stock_read) for code in stock_df["code"]: #print(code) flag_t = stock_read.loc[stock_read["code"] == code,"flag"] flag_t = flag_t.reset_index(drop=True) flag_t = pd.DataFrame(flag_t) t = '' if flag_t.empty: t = "new" else: t = flag_t.loc[0,"flag"] stock_df.loc[stock_df["code"] == code,"flag"] = t return stock_df def add_data(end_date,stock_df,pathsave): stock_df = stock_df.drop_duplicates(subset=["code"], keep="last", inplace=False) stock_df["code2"] = stock_df["code"].str.replace("sh.", "SH") stock_df["code2"] = stock_df["code2"].str.replace("sz.", "SZ") stock_df = stock_df.set_index("code") #print(stock_df) for code in stock_df.index: file = pathsave + "\" + stock_df.loc[code,"flag"] +"\"+ stock_df.loc[code,"code2"]+".csv" #print(file) df_old = pd.DataFrame() if os.path.isfile(file): df_old = pd.read_csv(file) df_all = download_data(stock_df.loc[code,"start_date"],end_date,code) df_all["code"] = df_all["code"].str.replace("sh.", "SH") df_all["code"] = df_all["code"].str.replace("sz.", "SZ") df_all["date"] = df_all["date"].str.replace("-", "") df_old = df_old.append(df_all) #df_new = df_old.reset_index(drop=True) df_old["date"] = df_old["date"].astype(str) df_old = df_old.drop_duplicates(subset=["date"], keep="last", inplace=False) df_old.to_csv(file,sep=",",encoding="gbk", index=False) def rewrite_new_file(pathsave):#对新增加的股票进行移动,更新到all.csv文件 file_name_w = pathsave + "\" + "all.csv" file_name_r = pathsave + "\" + "list.csv" pathdir = pathsave + "\" + "new" stock_read = pd.read_csv(file_name_r) pd_new = stock_read.loc[stock_read["flag"] == "new"] #newfiles = os.listdir(pathdir) #print(stock_read) if len(pd_new)>0: for file1 in pd_new["code"]: file =file1 #print(file) file = file.replace("sz.", "SZ") file = file.replace("sh.", "SH") file = file + ".csv" file2 = file file = pathdir + "\" + file if os.path.isfile(file): df_new = pd.read_csv(file) if pd.isna(df_new.loc[0,"peTTM"]): print(file,"可能是指数文件") else: if file.find("SZ")>=0: #print(file.find("SZ")) stock_read.loc[stock_read["code"]==file1, "flag"] = "sz" pathdir_sz = pathsave + "\" + "sz" dstfile = pathdir_sz +"\"+file2 shutil.move(file, dstfile) else: stock_read.loc[stock_read["code"]==file1, "flag"] = "sh" pathdir_sz = pathsave + "\" + "sh" dstfile = pathdir_sz + "\" + file2 shutil.move(file, dstfile) stock_read.to_csv(file_name_w,sep=",",encoding="utf-8", index=False) def sub_process(start_date,end_date,df_only_name1,q): lg = bs.login() print('login respond error_code:' + lg.error_code) print('login respond error_msg:' + lg.error_msg) print('-----process begin-----') print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), multiprocessing.current_process().name) df_factor1 = download_factor(start_date, end_date, df_only_name1) q.put(df_factor1,block = False) print('-----process done-----') print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),multiprocessing.current_process().name) exit(0) def sub_process2(end_date,df_only_name1,pathsave,q): lg = bs.login() print('login respond error_code:' + lg.error_code) print('login respond error_msg:' + lg.error_msg) print('-----process 下载数据 begin-----') print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), multiprocessing.current_process().name) add_data(end_date, df_only_name1,pathsave) q.put(multiprocessing.current_process().name,block = False) print('-----process 数据下载写入结束 done-----') print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),multiprocessing.current_process().name) exit(0) if __name__ == '__main__': # 获取指定日期全部股票的日K线数据 print("hello") lg = bs.login() print('login respond error_code:' + lg.error_code) print('login respond error_msg:' + lg.error_msg) pathsave = 'G:\datas of status\python codes\baostock\lx' # 设定临时文件存放位置 ori_date = "2018-01-01"#设定最初日期数据 start_date = "2020-08-18" #常设,设定这次要下载的数据开始日期 end_date = "2020-08-20" #常设,设定这次要下载的数据结束日期,结束日期必须是交易日,否则会出错 print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) print("开始比较") stock_df = conpare_list() #分清指数,上证,深证 print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) print("开始下载factor") file_w = pathsave + "\" + "list.csv" stock_df.to_csv(file_w, sep=",", index=False, header=True) #=====================下载factor all_nums = len(stock_df) epochs = 5 step = int(all_nums / epochs) process_list = [] q = multiprocessing.Queue(maxsize=epochs) for i in range(epochs): begin = i * step end = begin + step if i == epochs - 1: end = all_nums df_only_name1 = stock_df[begin:end] print("no.",i,begin,end) tmp_process = multiprocessing.Process(target=sub_process, args=(start_date,end_date,df_only_name1, q)) process_list.append(tmp_process) for process in process_list: process.start() # print("start",process) while (q.qsize() != epochs): # print(q.qsize(),"begin") if (q.qsize() >= 1): print(q.qsize()) time.sleep(5) else: time.sleep(20) time.sleep(1) df_factor = pd.DataFrame() while not q.empty(): list_g = q.get() df_factor = df_factor.append(list_g) #========= #df_factor = download_factor(start_date,end_date,stock_df) #分清有无复权,若有则设定开初下载数据时间有最初日期,然后再重新下载数据 df_factor = df_factor.drop_duplicates(subset=["code"], keep="last", inplace=False) print(df_factor) print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) #exit(0) print("下载factor结束,开始下载数据") stock_df["start_date"] = start_date for code in df_factor["code"]: stock_df.loc[stock_df["code"] == code,"start_date"] = ori_date #print(stock_df[220:240]) print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),"下边开始下载数据") #==============================#下载数据 all_nums = len(stock_df) epochs = 5 step = int(all_nums / epochs) process_list = [] q = multiprocessing.Queue(maxsize=epochs) for i in range(epochs): begin = i * step end = begin + step if i == epochs - 1: end = all_nums df_only_name1 = stock_df[begin:end] print("no.", i, begin, end) tmp_process = multiprocessing.Process(target=sub_process2, args=(end_date, df_only_name1,pathsave, q)) process_list.append(tmp_process) for process in process_list: process.start() # print("start",process) while (q.qsize() != epochs): # print(q.qsize(),"begin") if (q.qsize() >= 1): print(q.qsize()) time.sleep(5) else: time.sleep(20) time.sleep(1) #df_process = pd.DataFrame() while not q.empty(): list_g = q.get() print(list_g,"done") #df_process = df_process.append(list_g) #============================= print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) print("下载数据结束") rewrite_new_file(pathsave) #print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) bs.logout()