• gpio子系统和pinctrl子系统(中)


    pinctrl子系统核心实现分析

    pinctrl子系统的内容在drivers/pinctrl文件夹下,主要文件有(建议先看看pinctrl内核文档Documentation/pinctrl.txt):
    core.c
    devicetree.c
    pinconf.c
    pinmux.c
    pinctrl-xxx.c

    core.c为pinctrl的核心代码,实现了pinctrl框架,pinmux.c和pinconf.c基于core实现了对pinmux和pinconf的支持,pinctrl-xxx.c为厂商相关的pinctrl实现(又是苦逼的bsp工程师_),当然有些厂商还未采用pinctrl机制,因此就没有对应的实现。最后说一句,pinctrl的实现不许用我们在驱动里调用任何它提供的api,所有的pinctrl动作都是在通用内核代码里完成了,对于驱动工程师是透明的。驱动工程师只需要通过设备树文件就能掌控整个系统的pin管理了,后面分析的过程会证实这一点。

    pinctrl在代码层级只与bsp工程师有关,他们需要调用pinctrl api pinctrl_register注册。先引用一张网上截图:
    pinctrl子系统框架
    对于驱动工程师,只需要通过设备树文件就可以起到配置整个系统pin的目的。有几个概念先理一下,功能和组,功能就是指uart、i2c、spi等这些,组是pin的集合,我们都知道现在的soc的pin中,经常会遇到一个功能可以由不同的pin集合(即组)配置,当然同一时间只能选一个pin集合,因此,当我们要用某个功能的时候,需要告诉它func以及哪一组。下面开始分析pinctrl_register

    struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
    				    struct device *dev, void *driver_data)
    {
    	struct pinctrl_dev *pctldev;
    	int ret;
    
    	if (!pctldesc)
    		return NULL;
    	if (!pctldesc->name)
    		return NULL;
    
    	//一般只有pinctrl chip driver需要调用pinctrl_register,pctldev就是软件上pinctrl的抽象
    	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
    	if (pctldev == NULL) {
    		dev_err(dev, "failed to alloc struct pinctrl_dev
    ");
    		return NULL;
    	}
    
    	/* Initialize pin control device struct */
        //初始化一些成员,后面会遇到它们的
    	pctldev->owner = pctldesc->owner;
    	pctldev->desc = pctldesc;
    	pctldev->driver_data = driver_data;
        //pin_desc_tree用于存放所有的pin信息,由后面即将分析的pinctrl_register_pins来填充
        //所有pin信息来源于输入参数pctldesc,也就是说每个pinctrl chip driver的实现者需要告诉pinctrl
        //子系统该pinctrl chip所有的pin信息
    	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
        //这个由gpio子系统填充信息,还记得of_gpiochip_add_pin_range吧^_^最后总结的时候再结合gpio子系统一起看看这部分
    	INIT_LIST_HEAD(&pctldev->gpio_ranges);
    	pctldev->dev = dev;
    	mutex_init(&pctldev->mutex);
    
    	/* check core ops for sanity */
        //pinctrl_ops是pinctrl chip driver必须要实现的一组回调集合,后面在用到它里面的api时再详细讲解
    	if (pinctrl_check_ops(pctldev)) {
    		dev_err(dev, "pinctrl ops lacks necessary functions
    ");
    		goto out_err;
    	}
    
    	/* If we're implementing pinmuxing, check the ops for sanity */
        //如果提供了pinmux ops,检查下是否合法
    	if (pctldesc->pmxops) {
    		if (pinmux_check_ops(pctldev))
    			goto out_err;
    	}
    
    	/* If we're implementing pinconfig, check the ops for sanity */
        //如果提供了pinconf ops,检查下是否合法
    	if (pctldesc->confops) {
    		if (pinconf_check_ops(pctldev))
    			goto out_err;
    	}
    
    	/* Register all the pins */
    	dev_dbg(dev, "try to register %d pins ...
    ",  pctldesc->npins);
        //第一个核心操作,后面详细分析    ---------> 1
    	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
    	if (ret) {
    		dev_err(dev, "error during pin registration
    ");
    		pinctrl_free_pindescs(pctldev, pctldesc->pins,
    				      pctldesc->npins);
    		goto out_err;
    	}
    
    	mutex_lock(&pinctrldev_list_mutex);
        //将pctldev加入到全局链表
    	list_add_tail(&pctldev->node, &pinctrldev_list);
    	mutex_unlock(&pinctrldev_list_mutex);
    
    	//这是第二个核心操作,往往pinctrl设备本身也需要做一些配置,这个函数就是用于处理这个功能---------> 2
    	pctldev->p = pinctrl_get(pctldev->dev);
    
    	if (!IS_ERR(pctldev->p)) {
        	//如果pinctrl设备提供了default状态,设置为default状态
    		pctldev->hog_default =
    			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
    		if (IS_ERR(pctldev->hog_default)) {
    			dev_dbg(dev, "failed to lookup the default state
    ");
    		} else {
            	//设置为default状态
    			if (pinctrl_select_state(pctldev->p,
    						pctldev->hog_default))
    				dev_err(dev,
    					"failed to select default state
    ");
    		}
    
    		//如果pinctrl设备提供了sleep状态,获取它,以后再用
    		pctldev->hog_sleep =
    			pinctrl_lookup_state(pctldev->p,
    						    PINCTRL_STATE_SLEEP);
    		if (IS_ERR(pctldev->hog_sleep))
    			dev_dbg(dev, "failed to lookup the sleep state
    ");
    	}
    
    	//和调试相关,先忽略吧
    	pinctrl_init_device_debugfs(pctldev);
    
    	return pctldev;
    
    out_err:
    	mutex_destroy(&pctldev->mutex);
    	kfree(pctldev);
    	return NULL;
    }
    

    总结一下,pinctrl_register主要做了以下工作:

    1. 分配pctldev数据结构,并添加到全局链表pinctrldev_list
    2. 填充pctldev,根据pctldesc里的pin信息注册所有的pin信息到pctldev里的pin_desc_tree管理起来,
    3. 如果该pinctrl对应的设备树里有描述它自己的pin配置信息,那么解析它,并设置为default状态。这一部分是任何一个用到pinctrl设备都会进行的动作(解析、设置状态)
    4. 初始化调试相关的东西

    下面先看看pinctrl_register_pins的过程:

    static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
    				 struct pinctrl_pin_desc const *pins,
    				 unsigned num_descs)
    {
    	unsigned i;
    	int ret = 0;
    
    	for (i = 0; i < num_descs; i++) {
        	//遍历传入的所有pin的数据结构,一个个处理它们
            //pinctrl driver会传入所有的pin管脚及对应的名称
    		ret = pinctrl_register_one_pin(pctldev,
    					       pins[i].number, pins[i].name);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    
    static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
    				    unsigned number, const char *name)
    {
    	struct pin_desc *pindesc;
    
    	//查看是否已经存在了
    	pindesc = pin_desc_get(pctldev, number);
    	if (pindesc != NULL) {
    		pr_err("pin %d already registered on %s
    ", number,
    		       pctldev->desc->name);
    		return -EINVAL;
    	}
    
    	//分配一个pinctrl子系统用于管理pin的数据结构
    	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
    	if (pindesc == NULL) {
    		dev_err(pctldev->dev, "failed to alloc struct pin_desc
    ");
    		return -ENOMEM;
    	}
    
    	/* Set owner */
        //指定该pin的拥有者
    	pindesc->pctldev = pctldev;
    
    	/* Copy basic pin info */
    	if (name) {
        	//如果指定了名字,那么好吧,就用你了
    		pindesc->name = name;
    	} else {
        	//如果没有指定名字,用默认的格式组合一个
    		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
    		if (pindesc->name == NULL) {
    			kfree(pindesc);
    			return -ENOMEM;
    		}
    		pindesc->dynamic_name = true;
    	}
    
    	//将该pin添加到pctldev里管理起来
    	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
    	pr_debug("registered pin %d (%s) on %s
    ",
    		 number, pindesc->name, pctldev->desc->name);
    	return 0;
    }
    

    下面开始分析第二个核心部分pinctrl_get,注意,这部分是任何一个用到pinctrl设备都会进行的动作(解析、设置状态),所以还必须弄清楚它,它主要的作用就是通过解析该设备的pinctrl信息生成一个pinctrl数据结构,用于管理该设备的pin信息,如有哪些状态、每个状态有哪些设置(设置包括pinmux和pinconf两种,有些设备只用需要pinmux,有些需要pinmux和pinconf)

    struct pinctrl *pinctrl_get(struct device *dev)
    {
    	struct pinctrl *p;
    
    	if (WARN_ON(!dev))
    		return ERR_PTR(-EINVAL);
    
    	/*
    	 * See if somebody else (such as the device core) has already
    	 * obtained a handle to the pinctrl for this device. In that case,
    	 * return another pointer to it.
    	 */
        //如果已经有其他模块get了,那么pinctrl肯定已经创建好了,直接返回吧
    	p = find_pinctrl(dev);
    	if (p != NULL) {
    		dev_dbg(dev, "obtain a copy of previously claimed pinctrl
    ");
    		kref_get(&p->users);
    		return p;
    	}
    
    	//否则,创建一个pinctrl用于管理该设备本身的pin信息
    	return create_pinctrl(dev);
    }
    

    继续看解析的过程,通过看懂这部分,我们应该就很清楚设备树里需要怎么配置,怎么对整个系统的pin配置起作用的

    static struct pinctrl *create_pinctrl(struct device *dev)
    {
    	struct pinctrl *p;
    	const char *devname;
    	struct pinctrl_maps *maps_node;
    	int i;
    	struct pinctrl_map const *map;
    	int ret;
    
    	/*
    	 * create the state cookie holder struct pinctrl for each
    	 * mapping, this is what consumers will get when requesting
    	 * a pin control handle with pinctrl_get()
    	 */
    	p = kzalloc(sizeof(*p), GFP_KERNEL);
    	if (p == NULL) {
    		dev_err(dev, "failed to alloc struct pinctrl
    ");
    		return ERR_PTR(-ENOMEM);
    	}
    	p->dev = dev;
        //每个需要管理的设备都会有对应的pinctrl,每个设备也会有多个状态,如default、sleep等等(内核
        //默认定义了一些,自己也可以随意定义),每个状态又有可能有多种设置。这个需要自己慢慢理解^_^
        //这里的states成员就是用于存放所有的状态的
    	INIT_LIST_HEAD(&p->states);
        //这里的dt_maps就是用于存放所有的设置的
    	INIT_LIST_HEAD(&p->dt_maps);
    
    	//又是一个复杂的函数,后面分析,它主要用于解析设备树里的信息,生成该设备对应的maps(设置)
    	ret = pinctrl_dt_to_map(p);
    	if (ret < 0) {
    		kfree(p);
    		return ERR_PTR(ret);
    	}
    
    	devname = dev_name(dev);
    
    	mutex_lock(&pinctrl_maps_mutex);
    	/* Iterate over the pin control maps to locate the right ones */
        //遍历所有的的设置,这里遍历的是全局的maps链表,因为它要用到
        //pinctrl_map结构,而p->dt_maps里的不是该类型
    	for_each_maps(maps_node, i, map) {
    		/* Map must be for this device */
            //检查是否属于俺的设置
    		if (strcmp(map->dev_name, devname))
    			continue;
    
    		//将该设置加入到pinctrl中,也许有人会奇怪,前面的dt_maps不是已经包含了该设备的所有设置了么,
            //其实这里会对每个设置做进一步处理,然后放入到p中,后面分析
    		ret = add_setting(p, map);
    		/*
    		 * At this point the adding of a setting may:
    		 *
    		 * - Defer, if the pinctrl device is not yet available
    		 * - Fail, if the pinctrl device is not yet available,
    		 *   AND the setting is a hog. We cannot defer that, since
    		 *   the hog will kick in immediately after the device
    		 *   is registered.
    		 *
    		 * If the error returned was not -EPROBE_DEFER then we
    		 * accumulate the errors to see if we end up with
    		 * an -EPROBE_DEFER later, as that is the worst case.
    		 */
    		if (ret == -EPROBE_DEFER) {
    			pinctrl_free(p, false);
    			mutex_unlock(&pinctrl_maps_mutex);
    			return ERR_PTR(ret);
    		}
    	}
    	mutex_unlock(&pinctrl_maps_mutex);
    
    	if (ret < 0) {
    		/* If some other error than deferral occured, return here */
    		pinctrl_free(p, false);
    		return ERR_PTR(ret);
    	}
    
    	kref_init(&p->users);
    
    	/* Add the pinctrl handle to the global list */
    	mutex_lock(&pinctrl_list_mutex);
        //将每个设备用于控制pin的结构也放到一个全局链表中
    	list_add_tail(&p->node, &pinctrl_list);
    	mutex_unlock(&pinctrl_list_mutex);
    
    	return p;
    }
    

    先总结下create_pinctrl

    1. 创建一个pinctrl,将它加入到全局的pinctrl链表
    2. 解析该设备的说有设备树信息,将解析的状态挂到states里,解析的设置挂到dt_maps(当然,设置同时也挂到全局的maps里去了)

    实在不想贴代码了,不过不贴又不好解释清楚_ 继续上pinctrl_dt_to_map吧,它就是实现了上面总结的第二点:

    int pinctrl_dt_to_map(struct pinctrl *p)
    {
    	struct device_node *np = p->dev->of_node;
    	int state, ret;
    	char *propname;
    	struct property *prop;
    	const char *statename;
    	const __be32 *list;
    	int size, config;
    	phandle phandle;
    	struct device_node *np_config;
    
    	/* CONFIG_OF enabled, p->dev not instantiated from DT */
    	if (!np) {
    		if (of_have_populated_dt())
    			dev_dbg(p->dev,
    				"no of_node; not parsing pinctrl DT
    ");
    		return 0;
    	}
    
    	/* We may store pointers to property names within the node */
    	of_node_get(np);
    
    	/* For each defined state ID */
    	for (state = 0; ; state++) {
    		/* Retrieve the pinctrl-* property */
    		//pinctrl子系统规定了几个属性,如pinctrl-n,用于指定一个状态对应的设置,从0开始        
    		propname = kasprintf(GFP_KERNEL, "pinctrl-%d", state);
            //查找pinctrl-n属性
    		prop = of_find_property(np, propname, &size);
    		kfree(propname);
    		if (!prop)
    			break;
            //value对应的就是该状态对应的设置(可能有多个),后面会处理它
    		list = prop->value;
    		size /= sizeof(*list);
    
    		/* Determine whether pinctrl-names property names the state */
            //读pinctrl-names属性,也属于pinctrl子系统规定的属性,用于指定每个状态的名字,一一对应的
    		ret = of_property_read_string_index(np, "pinctrl-names",
    						    state, &statename);
    		/*
    		 * If not, statename is just the integer state ID. But rather
    		 * than dynamically allocate it and have to free it later,
    		 * just point part way into the property name for the string.
    		 */
    		if (ret < 0) {
    			/* strlen("pinctrl-") == 8 */
                //如果美誉pinctrl-names属性,那么状态名就是index
    			statename = prop->name + 8;
    		}
    
    		/* For every referenced pin configuration node in it */
            //一个一个处理设置
    		for (config = 0; config < size; config++) {
            	//第一个成员规定为配置节点(属于pinctrl的子节点)的引用,因此通过它可以找到该配置节点
    			phandle = be32_to_cpup(list++);
    
    			/* Look up the pin configuration node */
    			np_config = of_find_node_by_phandle(phandle);
    			if (!np_config) {
    				dev_err(p->dev,
    					"prop %s index %i invalid phandle
    ",
    					prop->name, config);
    				ret = -EINVAL;
    				goto err;
    			}
    
    			/* Parse the node */
                //找到对应的配置节点了,那么就解析那个配置节点到该设备的这个状态的这个设置中吧,后面继续贴 哎
    			ret = dt_to_map_one_config(p, statename, np_config);
    			of_node_put(np_config);
    			if (ret < 0)
    				goto err;
    		}
    
    		/* No entries in DT? Generate a dummy state table entry */
    		if (!size) {
    			ret = dt_remember_dummy_state(p, statename);
    			if (ret < 0)
    				goto err;
    		}
    	}
    
    	return 0;
    
    err:
    	pinctrl_dt_free_maps(p);
    	return ret;
    }
    
    

    继续看dt_to_map_one_config

    static int dt_to_map_one_config(struct pinctrl *p, const char *statename,
    				struct device_node *np_config)
    {
    	struct device_node *np_pctldev;
    	struct pinctrl_dev *pctldev;
    	const struct pinctrl_ops *ops;
    	int ret;
    	struct pinctrl_map *map;
    	unsigned num_maps;
    
    	/* Find the pin controller containing np_config */
    	np_pctldev = of_node_get(np_config);
    	for (;;) {
        	//找该节点的父节点,就是pinctrl设备啦,我们得通过它获取pctldev,毕竟只有它才有啊
    		np_pctldev = of_get_next_parent(np_pctldev);
    		if (!np_pctldev || of_node_is_root(np_pctldev)) {
    			dev_info(p->dev, "could not find pctldev for node %s, deferring probe
    ",
    				np_config->full_name);
    			of_node_put(np_pctldev);
    			/* OK let's just assume this will appear later then */
    			return -EPROBE_DEFER;
    		}
    		pctldev = get_pinctrl_dev_from_of_node(np_pctldev);
    		if (pctldev)//拿到就跳出
    			break;
    		/* Do not defer probing of hogs (circular loop) */
    		if (np_pctldev == p->dev->of_node) {
    			of_node_put(np_pctldev);
    			return -ENODEV;
    		}
    	}
    	of_node_put(np_pctldev);
    
    	/*
    	 * Call pinctrl driver to parse device tree node, and
    	 * generate mapping table entries
    	 */
    	ops = pctldev->desc->pctlops;
        //这里就用到了pinctrl_register注册时pctlops里的dt_node_to_map回调函数了
    	if (!ops->dt_node_to_map) {
    		dev_err(p->dev, "pctldev %s doesn't support DT
    ",
    			dev_name(pctldev->dev));
    		return -ENODEV;
    	}
        //调用它,靠它来解析出这个配置节点,毕竟格式只有对应的pinctrl driver最清楚
    	ret = ops->dt_node_to_map(pctldev, np_config, &map, &num_maps);
    	if (ret < 0)
    		return ret;
    
    	/* Stash the mapping table chunk away for later use */
        //将解析出来的设置添加到pctldev的dt_maps中,也会加到全局的maps中啦,这里就不再深入分析了,自己都觉得太啰嗦了
    	return dt_remember_or_free_map(p, statename, pctldev, map, num_maps);
    }
    

    继续看add_setting:

    static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
    {
    	struct pinctrl_state *state;
    	struct pinctrl_setting *setting;
    	int ret;
    	//前面只是解析出了所有的设置,这里就将所有的设置按状态归类起来,如果状态还没创建,就创建一个
    	state = find_state(p, map->name);
    	if (!state)
    		state = create_state(p, map->name);
    	if (IS_ERR(state))
    		return PTR_ERR(state);
    
    	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
    		return 0;
    
    	//分配一个设置数据结构
    	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
    	if (setting == NULL) {
    		dev_err(p->dev,
    			"failed to alloc struct pinctrl_setting
    ");
    		return -ENOMEM;
    	}
    
    	//设置的类型
    	setting->type = map->type;
    
    	//设置所属的pctldev
    	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
    	if (setting->pctldev == NULL) {
    		kfree(setting);
    		/* Do not defer probing of hogs (circular loop) */
    		if (!strcmp(map->ctrl_dev_name, map->dev_name))
    			return -ENODEV;
    		/*
    		 * OK let us guess that the driver is not there yet, and
    		 * let's defer obtaining this pinctrl handle to later...
    		 */
    		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
    			map->ctrl_dev_name);
    		return -EPROBE_DEFER;
    	}
    
    	//设置名字
    	setting->dev_name = map->dev_name;
    
    	switch (map->type) {//根据设置的类型处理设置,因为设置可以表示mux功能,也可以表示conf功能
    	case PIN_MAP_TYPE_MUX_GROUP://如果是mux功能的设置,调用mux模块处理
    		ret = pinmux_map_to_setting(map, setting);
    		break;
    	case PIN_MAP_TYPE_CONFIGS_PIN:
    	case PIN_MAP_TYPE_CONFIGS_GROUP://如果是mux功能的设置,调用conf模块处理
    		ret = pinconf_map_to_setting(map, setting);
    		break;
    	default:
    		ret = -EINVAL;
    		break;
    	}
    	if (ret < 0) {
    		kfree(setting);
    		return ret;
    	}
    
    	//将设置放入状态链表归类
    	list_add_tail(&setting->node, &state->settings);
    
    	return 0;
    }
    

    下面分别分析pinmux_map_to_settingpinconf_map_to_setting,先pinmux_map_to_setting,它是和pinmux相关,对应pinmux.c文件,里面也会用到pinmux_ops

    int pinmux_map_to_setting(struct pinctrl_map const *map,
    			  struct pinctrl_setting *setting)
    {
    	struct pinctrl_dev *pctldev = setting->pctldev;
    	const struct pinmux_ops *pmxops = pctldev->desc->pmxops;
    	char const * const *groups;
    	unsigned num_groups;
    	int ret;
    	const char *group;
    	int i;
    	//如果在register的时候没有指定pinmux_ops,那么该函数什么都不做,出错返回
    	if (!pmxops) {
    		dev_err(pctldev->dev, "does not support mux function
    ");
    		return -EINVAL;
    	}
    	//现在就是pinmux_ops作用的时候啦!里面会以从0开始的索引不停的调用
        //pinmux_ops里的get_function_name来获取对应的名字,然后和前面解析设备树过程解析出来的名字做匹配
        //直到找到或到末尾,返回该索引。这个索引与功能之间的关系由pinctrl bsp实现者负责
    	ret = pinmux_func_name_to_selector(pctldev, map->data.mux.function);
    	if (ret < 0) {
    		dev_err(pctldev->dev, "invalid function %s in map table
    ",
    			map->data.mux.function);
    		return ret;
    	}
        //保存该索引
    	setting->data.mux.func = ret;
    
    	//调用pmxops的get_function_groups获取该索引对应的组(可能存在多个,前面已经说过,一个功能可以由多个组实现,同一时间只能选一个组)
    	ret = pmxops->get_function_groups(pctldev, setting->data.mux.func,
    					  &groups, &num_groups);
    	if (ret < 0) {
    		dev_err(pctldev->dev, "can't query groups for function %s
    ",
    			map->data.mux.function);
    		return ret;
    	}
    	if (!num_groups) {
    		dev_err(pctldev->dev,
    			"function %s can't be selected on any group
    ",
    			map->data.mux.function);
    		return -EINVAL;
    	}
        //如果设备树里有直接指定组,那么就会以指定的组为默认选择
    	if (map->data.mux.group) {
    		bool found = false;
    		group = map->data.mux.group;
            //当然,也还是要校验下,组是否有效
    		for (i = 0; i < num_groups; i++) {
    			if (!strcmp(group, groups[i])) {
    				found = true;
    				break;
    			}
    		}
    		if (!found) {
    			dev_err(pctldev->dev,
    				"invalid group "%s" for function "%s"
    ",
    				group, map->data.mux.function);
    			return -EINVAL;
    		}
    	} else {
        	//如果没有指定,那么就用第一个组咯
    		group = groups[0];
    	}
    
    	//根据选定的组,获取该组的信息,返回的是该组对应的索引,这里会调用pmxops的get_group_name,操作
        //过程和前面的pinmux_func_name_to_selector类似
    	ret = pinctrl_get_group_selector(pctldev, group);
    	if (ret < 0) {
    		dev_err(pctldev->dev, "invalid group %s in map table
    ",
    			map->data.mux.group);
    		return ret;
    	}
        //保存该组索引
    	setting->data.mux.group = ret;
    
    	return 0;
    }
    

    继续pinconf_map_to_setting吧,它是和pinconf相关,对应pinconf.c文件,但里面还没用pinconf_ops,后面才会用到:

    int pinconf_map_to_setting(struct pinctrl_map const *map,
    			  struct pinctrl_setting *setting)
    {
    	struct pinctrl_dev *pctldev = setting->pctldev;
    	int pin;
    
    	switch (setting->type) {//该设置到底是什么类型,是pinctrl driver回调dt_node_to_map里解析的
        //配置有两种类型,一种是一个pin一个pin的配置,一种是将一些pin的配置组合为一个组,指定某个组就会采用那个组里的所有的pin的配置
    	case PIN_MAP_TYPE_CONFIGS_PIN:
        	//根据设备树里指定的pin名字获取它对应的pin号
    		pin = pin_get_from_name(pctldev,
    					map->data.configs.group_or_pin);
    		if (pin < 0) {
    			dev_err(pctldev->dev, "could not map pin config for "%s"",
    				map->data.configs.group_or_pin);
    			return pin;
    		}
            //将该设置对应的pin号保存起来
    		setting->data.configs.group_or_pin = pin;
    		break;
    	case PIN_MAP_TYPE_CONFIGS_GROUP:
        	//根据设备树指定的pin组获取它对应的group号
    		pin = pinctrl_get_group_selector(pctldev,
    					 map->data.configs.group_or_pin);
    		if (pin < 0) {
    			dev_err(pctldev->dev, "could not map group config for "%s"",
    				map->data.configs.group_or_pin);
    			return pin;
    		}
            //将该设置对应的group号保存起来
    		setting->data.configs.group_or_pin = pin;
    		break;
    	default:
    		return -EINVAL;
    	}
    	
        //保存所有其他用于配置的信息
    	setting->data.configs.num_configs = map->data.configs.num_configs;
    	setting->data.configs.configs = map->data.configs.configs;
    
    	return 0;
    }
    
    

    现在都仅仅是分析了pinmux_map_to_settingpinconf_map_to_setting,具体它们的作用我们在后面才能看的出来,所以继续分析吧!到这里pinctrl_get分析完了,执行完pinctrl_get,就意味着该设备的所有和pin相关的设备树信息已经解析完成,并生成了用于管理、配置的数据结构,为以后的其他api提供了支持。其他驱动一般不会直接调用pinctrl_get,而是调用它的变体devm_pinctrl_get或者pinctrl_get_select来初始化设备。devm_pinctrl_get就不用说了啦,pinctrl_get_select类似与pinctrl_register调用pinctrl_get及它后的那段代码的结合,不仅调用了pinctrl_get,还根据输入参数让设备处于指定的状态。通过pinctrl_select_state来让设备处于指定的状态,下面开始分析它,通过分析它,应该就清楚了前面各种填充的作用啦!

    int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
    {
    	struct pinctrl_setting *setting, *setting2;
    	struct pinctrl_state *old_state = p->state;
    	int ret;
    	//如果当前就是该状态,直接返回成功
    	if (p->state == state)
    		return 0;
    
    	//如果之前有设置过状态,那需要做一些额外处理
    	if (p->state) {
    		/*
    		 * The set of groups with a mux configuration in the old state
    		 * may not be identical to the set of groups with a mux setting
    		 * in the new state. While this might be unusual, it's entirely
    		 * possible for the "user"-supplied mapping table to be written
    		 * that way. For each group that was configured in the old state
    		 * but not in the new state, this code puts that group into a
    		 * safe/disabled state.
    		 */
    		list_for_each_entry(setting, &p->state->settings, node) {
    			bool found = false;
    			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
    				continue;
    			list_for_each_entry(setting2, &state->settings, node) {
    				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
    					continue;
    				if (setting2->data.mux.group ==
    						setting->data.mux.group) {
    					found = true;
    					break;
    				}
    			}
    			if (!found)
    				pinmux_disable_setting(setting);
    		}
    	}
    
    	p->state = NULL;
    
    	/* Apply all the settings for the new state */
        //
    	list_for_each_entry(setting, &state->settings, node) {
        //遍历该设备的该状态下的所有设置,一个个设置上去
    		switch (setting->type) {
    		case PIN_MAP_TYPE_MUX_GROUP://如果该设置是mux设置,那么调用pinmux_enable_setting,这里面
            	//就用到了前面填充的信息
    			ret = pinmux_enable_setting(setting);
    			break;
    		case PIN_MAP_TYPE_CONFIGS_PIN:
    		case PIN_MAP_TYPE_CONFIGS_GROUP://如果该设置是conf设置,那么调用pinconf_apply_setting,
            	//这里面就用到了前面填充的信息
    			ret = pinconf_apply_setting(setting);
    			break;
    		default:
    			ret = -EINVAL;
    			break;
    		}
    
    		if (ret < 0) {
    			goto unapply_new_state;
    		}
    	}
    
    	p->state = state;
    
    	return 0;
    
    unapply_new_state:
    	dev_err(p->dev, "Error applying setting, reverse things back
    ");
    
    	list_for_each_entry(setting2, &state->settings, node) {
    		if (&setting2->node == &setting->node)
    			break;
    		/*
    		 * All we can do here is pinmux_disable_setting.
    		 * That means that some pins are muxed differently now
    		 * than they were before applying the setting (We can't
    		 * "unmux a pin"!), but it's not a big deal since the pins
    		 * are free to be muxed by another apply_setting.
    		 */
    		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
    			pinmux_disable_setting(setting2);
    	}
    
    	/* There's no infinite recursive loop here because p->state is NULL */
    	if (old_state)
    		pinctrl_select_state(p, old_state);
    
    	return ret;
    }
    

    pinmux_enable_setting当然处于pinmux.c中,根据前面填充的setting->data.mux.group获取该组的pin信息,然后以pin号为参数循环回调ops->request,最后回调ops->enable。

    pinconf_apply_setting当然处于pinconf.c中,根据前面填充的group_or_pinconfigsnum_configs以及type分别回调pin_config_setpin_config_group_set

    最后补充下,本文描述的都是基于设备树方式的pinctrl处理,其实也可以通过pinctrl_register_mappings调用静态添加所有的设置,只是不常用该方式而已。

    未完,待续!
    2015年7月

  • 相关阅读:
    除草第一季 1 简单日常心得
    [搬家from qzone] 读书笔记 人间情味.半成品
    [搬家from qzone] 读书笔记 最好的告别
    [搬家from qzone] 读书笔记 爱是一种选择
    [搬家from qzone] 读书笔记 童年的王国
    [搬家from qzone] 我不是一个很好的学长,所以毕业前,给学习学妹们写写自己犯的错误吧
    博客重新开张 第一篇灌水
    我眼中的vim
    linux启动kdump失败
    centos7 minimal安装之后要做的事情
  • 原文地址:https://www.cnblogs.com/rongpmcu/p/7662755.html
Copyright © 2020-2023  润新知