cortex 支持多实例运行,可以灵活实际大规模的部署,以下demo,运行了三个cortex 实例,没有配置副本数(主要是ha )
同时对于三个cortex 使用haproxy 做为push 以及查询接口的lb,同时基于prometheus 对于haproxy 进行监控(基于haproxy 2.0 提供的promettheus
支持),基于docker-compose 运行系统依赖的组件,详细配置参考 github
环境准备
- docker-compose文件
version: "3"
services:
haproxy:
image: haproxy:2.0.5-alpine
volumes:
- "./haproxy.cfg:/usr/local/etc/haproxy/haproxy.cfg"
ports:
- "8404:8404"
- "9009:9009"
consul:
image: consul
ports:
- "8500:8500"
cortex1:
image: cortexproject/cortex:master-7d13c2f0
command: -config.file=/etc/single-process-config.yaml -ring.store=consul -consul.hostname=consul:8500
ports:
- "9001:9009"
volumes:
- "./single-process-config.yaml:/etc/single-process-config.yaml"
cortex2:
image: cortexproject/cortex:master-7d13c2f0
command: -config.file=/etc/single-process-config.yaml -ring.store=consul -consul.hostname=consul:8500
ports:
- "9002:9009"
volumes:
- "./single-process-config.yaml:/etc/single-process-config.yaml"
cortex3:
image: cortexproject/cortex:master-7d13c2f0
command: -config.file=/etc/single-process-config.yaml -ring.store=consul -consul.hostname=consul:8500
ports:
- "9003:9009"
volumes:
- "./single-process-config.yaml:/etc/single-process-config.yaml"
granfan:
image: grafana/grafana
ports:
- "3000:3000"
node-exporter:
image: basi/node-exporter
ports:
- "9100:9100"
prometheus:
image: prom/prometheus
ports:
- "9090:9090"
volumes:
- "./prometheus.yml:/etc/prometheus/prometheus.yml"
- cortex 配置
single-process-config.yaml 文件
# Configuration for running Cortex in single-process mode.
# This should not be used in production. It is only for getting started
# and development.
# Disable the requirement that every request to Cortex has a
# X-Scope-OrgID header. `fake` will be substituted in instead.
auth_enabled: false
server:
http_listen_port: 9009
# Configure the server to allow messages up to 100MB.
grpc_server_max_recv_msg_size: 104857600
grpc_server_max_send_msg_size: 104857600
grpc_server_max_concurrent_streams: 1000
distributor:
shard_by_all_labels: true
pool:
health_check_ingesters: true
ingester_client:
grpc_client_config:
# Configure the client to allow messages up to 100MB.
max_recv_msg_size: 104857600
max_send_msg_size: 104857600
use_gzip_compression: true
ingester:
#chunk_idle_period: 15m
lifecycler:
# The address to advertise for this ingester. Will be autodiscovered by
# looking up address on eth0 or en0; can be specified if this fails.
# address: 127.0.0.1
# We want to start immediately and flush on shutdown.
join_after: 0
claim_on_rollout: false
final_sleep: 0s
num_tokens: 512
# Use an in memory ring store, so we don't need to launch a Consul.
ring:
kvstore:
store: inmemory
replication_factor: 1
# Use local storage - BoltDB for the index, and the filesystem
# for the chunks.
schema:
configs:
- from: 2019-03-25
store: boltdb
object_store: filesystem
schema: v10
index:
prefix: index_
period: 168h
storage:
boltdb:
directory: /tmp/cortex/index
filesystem:
directory: /tmp/cortex/chunks
- prometheus 配置
prometheus.yml 文件,主要远端write 地址配置,同时配置了几个监控metrics
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
remote_write:
- url: http://haproxy:9009/api/prom/push
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['localhost:9090']
- job_name: 'node-exporter'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['node-exporter:9100']
- job_name: 'haproxy-exporter'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['haproxy:8404']
- haproxy 配置
主要是lb 后端cortex 服务9009 端口
global
# master-worker required for `program` section
# enable here or start with -Ws
master-worker
mworker-max-reloads 3
# enable core dumps
set-dumpable
user root
stats socket /run/haproxy.sock mode 600 level admin
group root
log stdout local0
defaults
mode http
log global
timeout client 5s
timeout server 5s
timeout connect 5s
option redispatch
option httplog
resolvers dns
parse-resolv-conf
resolve_retries 3
timeout resolve 1s
timeout retry 1s
hold other 30s
hold refused 30s
hold nx 30s
hold timeout 30s
hold valid 10s
hold obsolete 30s
userlist api
user admin password $5$aVnIFECJ$2QYP64eTTXZ1grSjwwdoQxK/AP8kcOflEO1Q5fc.5aA
frontend stats
bind *:8404
# Enable Prometheus Exporter
http-request use-service prometheus-exporter if { path /metrics }
stats enable
stats uri /stats
stats refresh 10s
frontend fe_main
bind :9009
log-format "%ci:%cp [%tr] %ft %b/%s %TR/%Tw/%Tc/%Tr/%Ta %ST %B %CC %CS %tsc %ac/%fc/%bc/%sc/%rc %sq/%bq %hr %hs %{+Q}r cpu_calls:%[cpu_calls] cpu_ns_tot:%[cpu_ns_tot] cpu_ns_avg:%[cpu_ns_avg] lat_ns_tot:%[lat_ns_tot] lat_ns_avg:%[lat_ns_avg]"
default_backend be_main
backend be_main
# Enable Power of Two Random Choices Algorithm
balance random(2)
# Enable Layer 7 retries
retry-on all-retryable-errors
retries 3
server cortex1 cortex1:9009 check inter 2s
server cortex2 cortex2:9009 check inter 2s
server cortex3 cortex3:9009 check inter 2s
backend be_503
errorfile 503 /usr/local/etc/haproxy/errors/503.http
启动&&效果
- 启动
docker-compose up -d
- prometheus 效果
- haproxy 监控
- 配置grafana
主要是prometheus datasource 以及dashboard 的添加
datasource ,注意datasource 地址为cortex 通过haproxy lb 的地址
dashboard, 可以参考项目,直接导入node exporter以及haproxy 的metrics dashboard
- granfan 效果
- cortex ring 效果
独立
haproxy
说明
以上是一个简单的配置,实际上我们可以通过在cortex启动的时候指定-distributor.replication-factor=3
保证cortex 的ha,同时上边是比较简单的
实践,实际我们还需要其他后端存储做为数据的存储
参考资料
https://github.com/cortexproject/cortex/blob/master/docs/getting_started.md
https://github.com/rongfengliang/cortex-docker-compose-running