• Uva10791 唯一分解定理模板


    唯一分解定理


    Uva10791

    题意:

    输入整数n,要求至少两个正整数,使得他们的最小公倍数为n,且这些整数的和最小

    解法:

    首先假设我们知道了一系列数字a1,a2,a3……an,他们的LCM是n,那么什么时候他们是最优解呢,当他们两两互质的时候

    为了方便我们以两个数来说明问题。

    a和b的LCM是n,GCD是m,那么n=a/m*b , 它们的和就是sum=a+b;

    如果m不为1(即a和b不互质),那么我们为什么不优化一下,将a变为a=a/m呢?,改变后a和b的LCM依然是n,但是他们的和显然减少了

    所以我们得到最重要的一个性质,要想a1,a2,a3……an的和最小,要保证他们两两互质,只要存在不互质的两个数,就一定可以近一步优化

    那我们怎么保证两两互质呢?方法其实很简单,直接分解质因子

    例如24=2*2*2*3 , 只能分解为8和3,因为这里有3个2,这3个2必须在一起,如果分开了这3个2,这出现有两个数会有一个公共的质因子2,并且会使这两个数的LCM不是24

    再例如72=2*2*2*3*3,只能分为8和9,因为3个2和2个3都不能分开,他们必须在一次

    所以,我们将一个数n分解为质因子后,顺便做一个处理,在除干净一个质因子的同时,将他们乘起来作为一个因子,处理完后会得到多个因子,他们之间同样满足两两互质的性质

    然后是进一步的分析

    例如264600=8*27*25*49  , 只是由3个2,3个3,2个5,2个7,处理后得到的因子,那么8,27,25,49的LCM是264600,并且两两互质,他们还要不要处理呢?不需要了,直接将他们加起来就是我们要的答案!为什么呢?可以将8,27,25,49这些数字乘起来,无论怎样乘都好,最后得到的数字它们的LCM依然是n,但是乘起来再相加显然比直接相加要大得多!

    所以我们已经得到了这个问题的解法

    1.将一个数分解成质因子,将相同的因子乘起来作为一个处理后的因子

    2.将处理后得到的多个因子直接相加就是答案

    3.因为题目说只要需要两个数字,所以对于1和素数我们需要小心。对于素数,我们只能分解出一个因子就它自己,对于1一个因子都分解不出来(我们不把1当做因子),他们的答案都是n+1,因为只有1和n的LCM是n

     1 /*
     2   唯一分解定理的应用,work_quality_factor就是分解质因数的板子
     3   将一个数分解质因数,将他们所有相同的因子乘起来作为一个新的因子,最后的和就是这些因子和
     4 */
     5 #include<cstdio>
     6 #include<cmath>
     7 using namespace std;
     8 typedef long long ll;
     9 const int maxn = 100;
    10 ll fac[maxn], frq[maxn];
    11 
    12 ll poww(ll a, ll b) {
    13     ll ans = 1, base = a;
    14     while (b != 0) {
    15         if (b & 1 != 0)
    16             ans *= base;
    17         base *= base;
    18         b >>= 1;
    19     }
    20     return ans;
    21 }
    22 
    23 ll work_quality_factor(ll n, ll quality_fac[], ll frequency[])
    24 {//n是待分解的数,quality_fac[]会存放它包含的质因子,而frequency[]存放对应次数
    25  //如q_f[k]=7,fre[k]=2就表示质因数分解后里面包含有7,且次数是2
    26  //函数返回有几种质因子,比如分解了25就返回1,分解28返回2
    27     ll res, temp, i;
    28     res = 0;
    29     temp = n;
    30     for (i = 2; i*i <= temp; i++)
    31         if (temp%i == 0)
    32         {
    33             quality_fac[res] = i;
    34             frequency[res] = 0;
    35             while (temp%i == 0)
    36             {
    37                 temp = temp / i;
    38                 frequency[res]++;
    39             }
    40             res++;
    41         }
    42     if (temp > 1)
    43     {
    44         quality_fac[res] = temp;
    45         frequency[res++] = 1;
    46     }
    47     return res;
    48 }
    49 
    50 int main() {
    51     ll n; int kase = 1;
    52     while (scanf("%lld", &n) && n) {
    53         ll num = work_quality_factor(n, fac, frq);
    54         ll ans = 0;
    55         if (num == 0 || num == 1) ans = n + 1;
    56         else {
    57             for (int i = 0; i < num; i++) {
    58                 ans += poww(fac[i], frq[i]);
    59             }
    60         }
    61         printf("Case %d: %lld
    ", kase++, ans);
    62     }
    63     return 0;
    64 }
  • 相关阅读:
    对于基础资料的关联操作
    单据关联关系记录
    单据转换插件中新增行
    APK签名校验绕过
    android 安全需要关注
    安卓从业者应该关注:Android 6.0的运行时权限
    让阿里云的Centos,PHP组件 ImageMagick支持png和jpeg格式
    cocos2d-x 常规库的图文件配置
    cocos2d-x 添加 libLocalStorage 库...
    cocos2d-x3.9 默认是 gnustl_static 配置,但是 这个库缺少c++的基础功能... c++_static 功能全面些
  • 原文地址:https://www.cnblogs.com/romaLzhih/p/9491203.html
Copyright © 2020-2023  润新知