• 7.17



    今天是第二天了,测评姬出了些毛病,今天的rating不算,有喜有悲吧
    明天加油!


    Codeforces Round #498 (Div. 3)
    A:Adjacent Replacements
    题解:奇数位置上的数不变,偶数位置上的数-1;

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    int a[1000 + 6];
    
    int main() {
        int n;
        scanf("%d", &n);
        for (int i = 0; i < n; i++) {
            scanf("%d", &a[i]);
        }
        if (a[0] % 2 == 0)printf("%d", a[0] - 1);
        else printf("%d", a[0]);
        for (int i = 1; i < n; i++) {
            if (a[i] % 2 == 0)printf(" %d", a[i] - 1);
            else printf(" %d", a[i]);
        }
        return 0;
    }

    B:Polycarp’s Practice
    题意:将一个序列分成n份,要求这n份中最大数的和最大
    解法:由于分法不限制,所以我们将每个最大的数放到区间的右边,如果最右边的最大数不在序列最右边,就把它移过去

    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<algorithm>
    using namespace std;
    typedef pair<int, int> pii;
    vector<int>vi;
    int vis[10005], n, k, tmp, ans = 0;
    vector<pii>vp;
    priority_queue <int, vector<int>, less<int>> q;
    bool cmp(pii a, pii b) { return a.second < b.second; }
    
    int find(int tmp) {
        for (int i = 0; i < n; i++) 
            if (vi[i] == tmp&&vis[i] == 0) {
                vis[i] = 1; return i;
            }
    }
    
    int main() {
        scanf("%d%d", &n, &k);
        for (int i = 0; i < n; i++) {
            scanf("%d", &tmp);
            vi.push_back(tmp);
            q.push(tmp);
        }
        for (int i = 0; i < k; i++) {
            tmp = q.top(); q.pop();
            int len = find(tmp);
            vp.push_back(make_pair(tmp, len));
            ans += tmp;
        }
        sort(vp.begin(), vp.end(), cmp);
        if (vp[vp.size() - 1].second != n - 1)vp[vp.size() - 1].second = n - 1;
        printf("%d
    %d", ans, vp[0].second + 1);
        for (int i = 1; i < vp.size(); i++) {
            printf(" %d", vp[i].second - vp[i - 1].second);
        }
        return 0;
    }

    C:Three Parts of the Array
    题意:将一个序列分成三份,每份序列可以为空,要求最左边的序列的和等于最右边的序列的和,问最大的和为多少?
    解法:meet—in—middle,从两边同时开始搜索,循环条件是两个指针的差>1,注意当序列长度小于2的时候(即只为1)的时候和是0

    #include<cstdio>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    ll d[200000 + 5];
    
    int main() {
        int n;
        scanf("%d", &n);
        for (int i = 0; i < n; i++) {
            scanf("%d", &d[i]);
        }
        int i = 0, j = n - 1;
        ll sum1 = d[0], sum3 = d[n - 1], fsum = 0;
        while (j - i > 1) {
            if (sum1 > sum3) { j--; sum3 += d[j]; }
            else if (sum1 < sum3) { i++; sum1 += d[i]; }
            else {
                fsum = sum1;
                if (j - i == 1)break;
                else { i++; sum1 += d[i]; }
            }
        }
        if (sum1 == sum3)fsum = sum1;
        if (n < 2)fsum = 0;
        printf("%I64d", fsum);
        return 0;
    }

    D:Two Strings Swaps
    题意:两个字符串,三种交换方式:
    1:交换a[i]和b[i],2:交换a[i]和a[n-i+1],3:交换b[i]和b[n-i+1]
    在交换前可以将a中的任意一个字母替换成另外一个任意字母,之后可以随意使用上述变换,最终结果要求两个字符串相等,求最小替换次数(上述所有操作只针对第一串)

    解法:
    首先,如果位置为i的字符不用替换,那么两种串的分布有三种情况;在这种情况下,如果6个条件满足任意一个,就只能是一个字母需要替换,否则就得替换两个字母,非常好的题!

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<string>
    using namespace std;
    string s1, s2;
    
    int main() {
        int n, ans = 0;
        scanf("%d", &n);
        cin >> s1 >> s2;
        for (int l = 0; l < n/2; l++) {
            int r = n - l - 1;
            if ((s1[l] == s2[l] && s1[r] == s2[r]) || (s1[l] == s1[r] && s2[l] == s2[r]) || (s1[l] == s2[r] && s1[r] == s2[l]))
                ans += 0;
            else if ((s1[l] == s2[l] || s1[r] == s2[r]) || (s1[l] == s2[r] || s2[l] == s2[r]) || (s1[l] == s2[r] || s1[r] == s2[l]))
                ans += 1;
            else ans += 2;
        }
        if (n % 2 == 1 && s1[n / 2] != s2[n / 2])ans++;
        cout << ans;
        return 0;
    }

    Uva11314Fabled Rooks
    题意:一个棋盘,横纵分成不同的几个区间,要求每个区间必须有一个棋子,不同棋子不能重叠,横纵坐标不能相同,输出每个棋子的坐标

    解法:首先横坐标和纵坐标其实没关系,直接分开看;接下来以横坐标为例,将所有的区间先按右边界从小到大排序,相等的话就按左边界从大到小排序,之后从每个区间最左边搜,如果最后大于等于右边界就无解,输出IMPOSSIBLE

    贪心的思路,直接dfs搜不过去

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    int vis[100000 + 5], n;
    const int maxn = 1e5 + 5;
    struct node {
        int l, r, num;
        bool operator < (const node &rhs){
            //区间右端点越小,优先级越高;同等情况下,左端点越大优先级越高
            //这种情况下,如果我们先取最右边的,则小区间必定满足,此时大区间被满足的几率也较大,因此不可以,所以我们从左边往右边取
            return r < rhs.r || (r == rhs.r&&l > rhs.l);
        }
    }x[maxn], y[maxn];
    
    int slove(int *a,node* q) {
        memset(a, 0, sizeof(a));
        memset(vis, 0, sizeof(vis));
        for (int i = 0; i < n; i++) {
            for (int j = q[i].l; j <= q[i].r; j++) {
                if (!vis[j]) {
                    a[q[i].num] = j; vis[j] = 1;
                    break;
                }
                if (j >= q[i].r)return 0;
            }
        }
        return 1;
    }
    
    int main() {
        int a[maxn], b[maxn];
        while (cin >> n && n)
        {
            for (int i = 0; i < n; ++i)
            {
                scanf("%d%d%d%d", &x[i].l, &y[i].l, &x[i].r, &y[i].r);
                x[i].num = y[i].num = i;
            }
            sort(x, x + n); sort(y, y + n);
            if (slove(a, x) && slove(b, y))
            {
                for (int i = 0; i < n; ++i)
                    printf("%d %d
    ", a[i], b[i]);
            }
            else
            {
                printf("IMPOSSIBLE
    ");
            }
        }
        return 0;
    }
    
    
  • 相关阅读:
    Mysql之主从复制
    Java之对象序列化和反序列化
    java URI 与URL问题
    java之路径
    Java学习之位运算和逻辑运算符
    设计模式之六大原则
    观察者模式与监听器
    动态代理
    git 本地分支与远程分支
    创建分支策略
  • 原文地址:https://www.cnblogs.com/romaLzhih/p/9489809.html
Copyright © 2020-2023  润新知