• 8.9日总结


    题赛地址


    C题:(三元环计数) 
    题意,给定一个图,求四元环的个数,这个四元环要求是由两个三元环相邻一条共同边组成的

    解法: 
    ①统计每个点的度数 
    ②入度<=sqrt(m)的分为第一类,入度>sqrt(m)的分为第二类 
    ③对于第一类,暴力每个点,然后暴力这个点的任意两条边,再判断这两条边的另一个端点是否连接 
    因为m条边最多每条边遍历一次,然后暴力的点的入度<=sqrt(m),所以复杂度约为O(msqrt(m)) 
    ④对于第二类,直接暴力任意三个点,判断这三个点是否构成环,因为这一类点的个数不会超过sqrt(m)个,所以复杂度约为O(sqrt(m)3)=O(msqrt(m)) 
    ⑤判断两个点是否连接可以用set,map和Hash都行,根据具体情况而行 
    这种做法建的是双向边,常数很大

     1 //https://www.cnblogs.com/jiachinzhao/p/7474761.html
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<set>
     5 #include<cmath>
     6 #include<vector>
     7 using namespace std;
     8 typedef long long ll;
     9 const int maxn = 1e5 + 10;
    10 set<ll>s;
    11 int deg[maxn];
    12 vector<int>g[maxn];
    13 int vis[maxn], vi[maxn];
    14 
    15 int main() {
    16     int n, m, u, v, sz;
    17     while (scanf("%d%d", &n, &m) != EOF) {
    18         sz = sqrt(m + 0.5);
    19         s.clear();
    20         for (int i = 1; i <= n; i++) {
    21             vis[i] = vi[i] = deg[i] = 0;
    22             g[i].clear();
    23         }
    24         for (int i = 0; i < m; i++) {
    25             scanf("%d%d", &u, &v);
    26             s.insert(u + 1ll * v*n);
    27             s.insert(v + 1ll * u*n);
    28             deg[u]++, deg[v]++;
    29             g[u].push_back(v); g[v].push_back(u);
    30         }
    31         ll ans = 0;
    32         for (int u = 1; u <= n; u++) {
    33             vis[u] = 1;
    34             for (auto v : g[u])vi[v] = u;
    35             for (auto v : g[u]) {
    36                 int cnt = 0;
    37                 if (vis[v])continue;
    38                 if (deg[v] <= sz) {
    39                     for (auto vv : g[v])
    40                         if (vi[vv] == u)cnt++;
    41                 }
    42                 else {
    43                     for (auto vv : g[u]) {
    44                         if (s.find(1ll * v*n + vv) != s.end())cnt++;
    45                     }
    46                 }
    47                 ans += 1ll * cnt*(cnt - 1) / 2;
    48             }
    49         }
    50         printf("%lld
    ", ans);
    51     }
    52     return 0;
    53 }

    D(矩阵快速幂) 
    题意:有一个4*n的矩阵,要求只能只能用2x1的木板覆盖,问一共有多少种覆盖的方法

    解法: 
    当前一列已经铺满的时候,那么下一列一共有五种铺法,根据这五种铺发推出递推关系式,之后矩阵快速幂跑一下即可 
    博客链接

     1 //https://blog.csdn.net/elbadaernu/article/details/77825979
     2 
     3 #include <iostream> 
     4 #include <cstring>
     5 #include <cstdio>
     6 using namespace std;
     7 #define LL long long 
     8 const int mod = 1000000007;
     9 struct matrix
    10 {
    11     LL x[4][4];
    12 };
    13 matrix mutimatrix(matrix a, matrix b)
    14 {
    15     matrix temp;
    16     memset(temp.x, 0, sizeof(temp.x));
    17     for (int i = 0; i < 4; i++)
    18         for (int j = 0; j < 4; j++)
    19             for (int k = 0; k < 4; k++)
    20             {
    21                 temp.x[i][j] += a.x[i][k] * b.x[k][j];
    22                 temp.x[i][j] %= mod;
    23             }
    24     return temp;
    25 }
    26 
    27 matrix k_powmatrix(matrix a, LL n)//矩阵快速幂
    28 {
    29     matrix temp;
    30     memset(temp.x, 0, sizeof(temp.x));
    31     for (int i = 0; i < 4; i++)
    32         temp.x[i][i] = 1;
    33 
    34     while (n)
    35     {
    36         if (n & 1)
    37             temp = mutimatrix(temp, a);
    38 
    39         a = mutimatrix(a, a);
    40         n >>= 1;
    41     }
    42     return temp;
    43 }
    44 
    45 
    46 int main(){
    47     LL n;
    48     while (scanf("%lld", &n) != EOF){
    49         //前面四个手算下
    50         if (n == 1){printf("1
    ");continue;}
    51         if (n == 2){printf("5
    ");continue;}
    52         if (n == 3){printf("11
    ");continue;}
    53         if (n == 4){printf("36
    ");continue;}
    54 
    55         matrix st;
    56         memset(st.x, 0, sizeof(st.x));
    57         st.x[0][0] = 1;
    58         st.x[1][0] = 5;
    59         st.x[2][0] = 1;
    60         st.x[3][0] = -1;
    61 
    62         st.x[0][1] = 1;
    63         st.x[1][2] = 1;
    64         st.x[2][3] = 1;
    65 
    66         matrix init;//初始矩阵
    67         memset(init.x, 0, sizeof(init.x));
    68 
    69         init.x[0][0] = 36;
    70         init.x[0][1] = 11;
    71         init.x[0][2] = 5;
    72         init.x[0][3] = 1;
    73 
    74         st = k_powmatrix(st, n - 4);//经过n-4次相乘
    75         st = mutimatrix(init, st);//然后再乘上初始矩阵
    76 
    77         printf("%lld
    ", (st.x[0][0] + mod) % mod);
    78     }
    79     return 0;
    80 }
     

    E: 
    题意: 
    有一列数,每次询问随机的删掉一个数,求最后所有数且、或、异或的结果

    解法: 
    按位处理,每一位统计一的个数,之后按一的个数为0,为1,为n,以及其他情况分类讨论即可

     1 #include<cstdio>
     2 #include<cstring>
     3 using namespace std;
     4 const int maxn = 1e6 + 5;
     5 
     6 int n, m;
     7 int a[maxn];
     8 int b[maxn];
     9 
    10 int main() {
    11     while (~scanf("%d %d", &n, &m)) {
    12         memset(a, 0, sizeof(a)); 
    13         memset(b, 0, sizeof(b));
    14 
    15         int AND = 0, OR = 0, XOR = 0;
    16         for (int i = 1; i <= n; i++) {
    17             scanf("%d", &a[i]);
    18             int t = a[i], k = 0;
    19             XOR ^= a[i];
    20             while (t) { b[k++] += t % 2; t /= 2; }
    21         }
    22 
    23         while (m--){
    24             int x; scanf("%d", &x);
    25             x = a[x];
    26             int NXOR = XOR^x;
    27             AND = 0, OR = 0;
    28             for (int j = 0; j < 32; j++) {
    29                 if (b[j] == 0)continue;
    30                 else if (b[j] == 1) {
    31                     if (x&(1 << j))continue;
    32                     OR += (1 << j);
    33                     if (n == 2)AND += (1 << j);
    34                 }
    35                 else if (b[j] == n) {
    36                     AND += (1 << j); OR += (1 << j);
    37                 }
    38                 else {
    39                     OR += (1 << j);
    40                     if (b[j] == n - 1 && !(x&(1 << j)))
    41                         AND += (1 << j);
    42                 }
    43             }
    44             printf("%d %d %d
    ", AND, OR, NXOR);
    45         }
    46     }
    47     return 0;
    48 }

    H:(打表+数论) 
    题意: 
    给定一个数n和a,问在 [1,1 << n] 的范围内有多少个b满足 a^b=b^a(mod 1 << n)

    解法: 
    关键是思路! 

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<string>
     5 #include<string>
     6 #include<cmath>
     7 #include<stack>
     8 #include<vector>
     9 #include<queue>
    10 #include<algorithm>
    11 using namespace std;
    12 const int MAXM=100010;
    13 const long long MOD=1000000007;
    14 const double PI=acos(-1);
    15 
    16 long long n,a;
    17 
    18 long long qpow(long long x,long long y,long long mod)
    19 {
    20     long long res=1;
    21     while(y)
    22     {
    23         if (y&1) res=(res*x)%mod;
    24         x=(x*x)%mod;
    25         y=y>>1;
    26     }
    27     return res;
    28 }
    29 long long qpow(long long x,long long y)
    30 {
    31     long long res=1;
    32     while(y)
    33     {
    34         if (y&1) res=res*x;
    35         x=x*x;
    36         y=y>>1;
    37     }
    38     return res;
    39 }
    40 int main()
    41 {
    42     while(scanf("%lld%lld",&n,&a)!=EOF)
    43     {
    44         if (a&1)
    45         {
    46             printf("1
    ");
    47             continue;
    48         }
    49         else
    50         {
    51             long long m=1<<n;
    52             long long ans=0;
    53             for (long long i=1;i<=n;i++)
    54                 if (qpow(a,i,m)==qpow(i,a,m))
    55                 ans++;
    56             long long b2=n/a;
    57             if (b2*a<n) b2=b2+1;
    58             long long b3=qpow(2,b2);
    59             //int b4=qpow(2,a);
    60             long long res=m/b3-n/b3;
    61             ans=ans+res;
    62             printf("%lld
    ",ans);
    63         }
    64     }
    65     return 0;
    66 }
    67  
  • 相关阅读:
    opencv图片拼接报错cv::Stitcher::ERR_NEED_MORE_IMGS (1)
    python 安装包
    推荐系统之基于邻域的算法-------协同过滤算法
    推荐系统学习之评测指标
    推荐系统之基于图的推荐:基于随机游走的PersonalRank算法
    又一次面试
    隐马尔科夫模型
    斯坦福大学机器学习——高斯判别分析
    python总结
    <转>ML 相关算法参考
  • 原文地址:https://www.cnblogs.com/romaLzhih/p/9489793.html
Copyright © 2020-2023  润新知