• URAL 1486 Equal Squares 二维Hash


    Hash在信息学竞赛中的一类应用 论文中的第一道例题,关于二维hash的一些处理方法和小技巧
    • 通过RK法计算hash值如果不取模的话可以O(n)预处理,然后O(1)得到任意一个字串的hash值
    • 得到任意子串的hash值的时候不能用除和取模运算了,显然是错的
    • 二维hash如果使用RK法每一次的p值必须不一样
    • 如果不能确定hash值一定不是唯一的,可以计算一个用来确定pos 的hash值和一个用来确定值的hash值

    代码写的相当挫,不忍直视

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <map>
    #include <set>
    #include <vector>
    #include <string>
    #include <queue>
    #include <deque>
    #include <bitset>
    #include <list>
    #include <cstdlib>
    #include <climits>
    #include <cmath>
    #include <ctime>
    #include <algorithm>
    #include <stack>
    #include <sstream>
    #include <numeric>
    #include <fstream>
    #include <functional>
    
    using namespace std;
    
    #define MP make_pair
    #define PB push_back
    typedef long long LL;
    typedef unsigned long long ULL;
    typedef vector<int> VI;
    typedef pair<int,int> pii;
    const int INF = INT_MAX / 3;
    const double eps = 1e-8;
    const LL LINF = 1e17;
    const double DINF = 1e60;
    const int maxn = 600;
    const int hash_size = 65536;
    const unsigned int p_col = 3131, p_row_pos = 1e9 + 7, p_row_val = 2e9 + 17;
    char mat[maxn][maxn];
    int n,m;
    int head[hash_size], nxt[hash_size * 10];
    unsigned int val[hash_size * 10], pos_x[hash_size * 10], pos_y[hash_size * 10], sz;
    unsigned int pow_col[maxn], pow_row_pos[maxn], pow_row_val[maxn];
    unsigned int hc_col[maxn][maxn], hc1[maxn][maxn], hc2[maxn], hc3[maxn];
    int ans_x1, ans_x2, ans_y1, ans_y2;
    
    void init() {
        pow_col[0] = pow_row_pos[0] = pow_row_val[0] = 1;
        for(int i = 1;i <= 500;i++) {
            pow_col[i] = p_col * pow_col[i - 1];
            pow_row_pos[i] = p_row_pos * pow_row_pos[i - 1];
            pow_row_val[i] = p_row_val * pow_row_val[i - 1];
        }
    }
    
    void init_hc() {
        for(int j = 1;j <= m;j++) {
            for(int i = 1;i <= n;i++) {
                hc_col[i][j] = hc_col[i - 1][j] * p_col + mat[i][j];
            }
        }
    }
    
    bool ask(int pos_hash,int val_hash,int x,int y) {
        pos_hash &= (hash_size - 1);
        for(int i = head[pos_hash]; ~i; i = nxt[i]) {
            if(val[i] == val_hash) {
                ans_x1 = pos_x[i];
                ans_y1 = pos_y[i];
                return true;
            }
        }
        pos_x[sz] = x; pos_y[sz] = y;
        val[sz] = val_hash;
        nxt[sz] = head[pos_hash];
        head[pos_hash] = sz++;
        return false;
    }
    
    bool ok(int len) {
        //初始化hash表
        memset(head,-1,sizeof(head));
        sz = 0;
        for(int j = 1;j <= m;j++) {
            for(int i = len;i <= n;i++) {
                hc1[i][j] = hc_col[i][j] - hc_col[i - len][j] * pow_col[len];
            }
        }
    
        for(int i = len;i <= n;i++) {
            hc2[0] = hc3[0] = 0;
            for(int j = 1;j <= m;j++) {
                hc2[j] = hc2[j - 1] * p_row_pos + hc1[i][j] % p_row_pos;
                hc3[j] = hc3[j - 1] * p_row_val + hc1[i][j] % p_row_val;
                if(j >= len) {
                    int row_val_hash = hc3[j] - hc3[j - len] * pow_row_val[len],
                        row_pos_hash = hc2[j] - hc2[j - len] * pow_row_pos[len];
                    if(ask(row_pos_hash,row_val_hash,i,j)) {
                        ans_x2 = i; ans_y2 = j; return true;
                    }
                }
            }
        }
        return false;
    }
    
    void solve() {
        init_hc();
        //二分枚举边长
        int l = 1, r = min(n,m), ans = 0;
        while(l <= r) {
            int mid = (l + r) >> 1;
            if(ok(mid)) {
                ans = mid; l = mid + 1;
            }
            else r = mid - 1;
        }
        printf("%d
    ",ans);
        if(ans) printf("%d %d %d %d
    ",ans_x1 - ans + 1,ans_y1 - ans + 1,ans_x2 - ans + 1,ans_y2 - ans + 1);
    }
    
    int main() {
        init();
        while(scanf("%d%d",&n,&m) != EOF) {
            for(int i = 1;i <= n;i++) scanf("%s",mat[i] + 1);
            solve();
        }
        return 0;
    }
    

      

  • 相关阅读:
    MATLAB符号运算(2)
    ruby的字符串
    MATLAB符号运算(3)
    ruby的lambda
    MATLAB概率统计函数(2)
    ruby的迭代
    MATLAB优化问题(2)
    ruby的方法和block
    MATLAB优化问题(1)
    ruby的正则表达式操作(3)
  • 原文地址:https://www.cnblogs.com/rolight/p/3952230.html
Copyright © 2020-2023  润新知