下载spark-1.6.1-bin-hadoop2.6.tgz
解压
配置
mv spark-env.sh.template spark-env.sh vi spark-env.sh 在该配置文件中添加如下配置 export JAVA_HOME=/usr/java/jdk1.7.0_45 export SPARK_MASTER_IP=mini1 export SPARK_MASTER_PORT=7077 保存退出 重命名并修改slaves.template文件 mv slaves.template slaves vi slaves 在该文件中添加子节点所在的位置(Worker节点) mini2 mini3
启动
sbin/start-all.sh
bin/spark-shell 启动单机版的spark-shell,不会再浏览器中看到他的信息
//启动集群的sparkshell
bin/spark-shell --master spark://mini1:7077 --executor-memory 512m --total-executor-cores 1
--master spark://mini1:7077 指定Master的地址
--executor-memory 2g 指定每个worker可用内存为2G
--total-executor-cores 2 指定整个集群使用的cup核数为2个
wc
bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://mini1:7077 --total-executor-cores 1 --executor-memory 612m lib/spark-examples-1.6.1-hadoop2.6.0.jar 50
sc.textFile("hdfs://mini1:9000/wc/sparkInput").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_,1).sortBy(_._2,false).saveAsTextFile("hdfs://mini1:9000/wc/sparkOutput2/")
object WordCount { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("WC") val sc = new SparkContext(conf) sc.textFile(args(0)).flatMap(_.split(" ")). map((_,1)).reduceByKey(_+_).sortBy(_._2,false).saveAsTextFile(args(1)) // sc.textFile("hdfs://mini1:9000/wc/sparkInput").flatMap(_.split(" ")) // .map((_,1)).reduceByKey(_+_,1).sortBy(_._2,false).saveAsTextFile("hdfs://mini1:9000/wc/sparkOutput2/") sc.stop() } }
pom.xml
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>cn.my.spark</groupId> <artifactId>helloSpark</artifactId> <version>2.0</version> <properties> <maven.compiler.source>1.8</maven.compiler.source> <maven.compiler.target>1.8</maven.compiler.target> <encoding>UTF-8</encoding> <scala.version>2.10.6</scala.version> <spark.version>1.6.1</spark.version> <hadoop.version>2.6.4</hadoop.version> </properties> <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>${hadoop.version}</version> </dependency> </dependencies> <build> <sourceDirectory>src/main/scala</sourceDirectory> <testSourceDirectory>src/test/scala</testSourceDirectory> <plugins> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.2.2</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> <configuration> <args> <!-- scala2.11不支持这个参数,报错<arg>-make:transitive</arg>--> <arg>-make:transitive</arg> <arg>-dependencyfile</arg> <arg>${project.build.directory}/.scala_dependencies</arg> </args> </configuration> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>2.4.3</version> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <filters> <filter> <artifact>*:*</artifact> <excludes> <exclude>META-INF/*.SF</exclude> <exclude>META-INF/*.DSA</exclude> <exclude>META-INF/*.RSA</exclude> </excludes> </filter> </filters> <transformers> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <!--<mainClass>cn.my.spark.WordCount</mainClass>--> <mainClass></mainClass> </transformer> </transformers> </configuration> </execution> </executions> </plugin> </plugins> </build> </project>