1.Minimum Depth of Binary Tree
// 递归版,时间复杂度O(n),空间复杂度O(logn) private static int minDepth(TreeNode root) { if (root == null) return 0; return Math.min(minDepth(root.left), minDepth(root.right))+1; }
2.Maximum Depth of Binary Tree
同上,递归版,// 时间复杂度O(n),空间复杂度O(logn) public int maxDepth(TreeNode root) { if (root == null) return 0; return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1; }
3.Path Sum
return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22 // 时间复杂度O(n),空间复杂度O(logn) public boolean hasPathSum(TreeNode root, int sum) { if (root == null) return false; if (root.left == null && root.right == null) // leaf return sum == root.val; return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val); }
4.Path Sum II
同上,返回路径 // 时间复杂度O(n),空间复杂度O(logn) public List<List<Integer>> pathSum(TreeNode root, int sum) { List<List<Integer>> result = new ArrayList<>(); ArrayList<Integer> cur = new ArrayList<>(); // 中间结果 pathSum(root, sum, cur, result); return result; } private static void pathSum(TreeNode root, int gap, ArrayList<Integer> cur, List<List<Integer>> result) { if (root == null) return; cur.add(root.val); if (root.left == null && root.right == null) { if (gap == root.val) { result.add(new ArrayList<>(cur)); } } pathSum(root.left, gap - root.val, cur, result); pathSum(root.right, gap - root.val, cur, result); cur.remove(cur.size() - 1); //添加的删除了 }
5.Binary Tree Maximum Path Sum
// 时间复杂度O(n),空间复杂度O(logn) private int max_sum; private int dfs(TreeNode root) { if (root == null) return 0; int l = dfs(root.left); int r = dfs(root.right); int sum = root.val; if (l > 0) sum += l; if (r > 0) sum += r; max_sum = Math.max(sum, max_sum); return Math.max(l, r) > 0 ? Math.max(l, r) + root.val : root.val; }
6、给一棵二叉树, 找到和为最小的子树, 返回其根节点。
public class Solution { private TreeNode subtree = null; private int subtreeSum = Integer.MAX_VALUE; public TreeNode findSubtree(TreeNode root) { helper(root); return subtree; } private int helper(TreeNode root) { if (root == null) { return 0; } int sum = helper(root.left) + helper(root.right) + root.val; if (sum <= subtreeSum) { subtreeSum = sum; subtree = root; } return sum; } }
7、求从根(root)到叶(leaf)的所有路径
Input:{1,2,3,#,5}
Output:["1->2->5","1->3"]
Explanation:
1
/
2 3
5
public class Solution { public List<String> binaryTreePaths(TreeNode root) { List<String> paths = new ArrayList<>(); if (root == null) { return paths; } List<String> leftPaths = binaryTreePaths(root.left); List<String> rightPaths = binaryTreePaths(root.right); for (String path : leftPaths) { paths.add(root.val + "->" + path); } for (String path : rightPaths) { paths.add(root.val + "->" + path); } // root is a leaf if (paths.size() == 0) { paths.add("" + root.val); } return paths; } }
8、给定一棵二叉树,找到两个节点的最近公共父节点(LCA)。
最近公共祖先是两个节点的公共的祖先节点且具有最大深度。
public class Solution { // 在root为根的二叉树中找A,B的LCA: // 如果找到了就返回这个LCA // 如果只碰到A,就返回A // 如果只碰到B,就返回B // 如果都没有,就返回null public TreeNode lowestCommonAncestor(TreeNode root, TreeNode node1, TreeNode node2) { if (root == null || root == node1 || root == node2) { return root; } // Divide TreeNode left = lowestCommonAncestor(root.left, node1, node2); TreeNode right = lowestCommonAncestor(root.right, node1, node2); // Conquer if (left != null && right != null) { return root; } if (left != null) { return left; } if (right != null) { return right; } return null; } }
参考:九章算法
https://www.jiuzhang.com/
https://www.jiuzhang.com/solutions/minimum-subtree/
https://www.jiuzhang.com/solutions/binary-tree-paths/