• 【Leetcode】Triangle


    给定一个由数字组成的三角形,从顶至底找出路径最小和。

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

    For example, given the following triangle

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Note:
    Bonus point if you are able to do this using only O(n) extra space, wheren is the total number of rows in the triangle.

    思路一:递归,要求以某个数为起点的最小和,可以先求出以跟它相邻的下一层的两个数为起点的最小和,然后取两者的更小者,最后与该数相加即可。基于此可以写出下面的代码:

    class Solution {
    public:
    	int minimumTotal(vector<vector<int> > &triangle) 
    	{
    		// Start typing your C/C++ solution below
    		// DO NOT write int main() function
    		return minimumTotal(triangle,0,0);
    	}
    
    	int minimumTotal(vector<vector<int> > &triangle, int i, int j)
    	{
    		if(i == triangle.size()-1)
    			return triangle[i][j];
    
    		int sum0 = minimumTotal(triangle,i+1,j);
    		int sum1 = minimumTotal(triangle,i+1,j+1);
    
    		return min(sum0,sum1) + triangle[i][j];
    	}
    };
    

    可以看到代码简洁易懂,不过在Judge large时超时,原因是重复计算了很多子问题,优化它的思路就是用DP,思想是把先把子问题计算好,供查询使用。下面贴上优化的代码:

    class Solution 
    {
    public:
    	int minimumTotal(vector<vector<int> > &triangle) 
    	{
    		// Start typing your C/C++ solution below
    		// DO NOT write int main() function
    		// 分配空间
    		int numRow = triangle.size();
    		vector<vector<int> > ibuffer;
    		ibuffer.resize(numRow);
    		for (int i=0; i<numRow; ++i)
    			ibuffer[i].resize(numRow);
    
    		// 从底到顶计算最小和
    		for (int i=numRow-1; i>=0; --i)
    		{
    			vector<int> &row = triangle[i];
    
    			for (int j=0; j<row.size(); ++j)
    			{
    				if(i==numRow-1)
    					ibuffer[i][j] = row[j];
    				else
    					ibuffer[i][j] = min(row[j]+ibuffer[i+1][j], row[j]+ibuffer[i+1][j+1]);
    			}
    		}
    		
    		return ibuffer[0][0];
    	}
    };

    上面的代码可以通过Large judge。不过开了一个n*n大小的二维数组,因此空间复杂度为O(n^2),n为三角形的层数。进一步观察发现,开二维数组没有必要,因为每次计算只会查询下一层的计算结果,下下层及更后层的计算结果不会使用到,因此可以只开个大小为n的一维数组就可以了。最终代码如下:

    class Solution 
    {
    public:
    	int minimumTotal(vector<vector<int> > &triangle) 
    	{
    		// Start typing your C/C++ solution below
    		// DO NOT write int main() function
    		// 分配空间
    		int numRow = triangle.size();
    		vector<int> ibuffer;
    		ibuffer.resize(numRow);
    
    		// 从底到顶计算最小和
    		for (int i=numRow-1; i>=0; --i)
    		{
    			vector<int> &row = triangle[i];
    
    			for (int j=0; j<row.size(); ++j)
    			{
    				if(i==numRow-1)
    					ibuffer[j] = row[j];
    				else
    					ibuffer[j] = min(row[j]+ibuffer[j], row[j]+ibuffer[j+1]);
    			}
    		}
    
    		return ibuffer[0];
    	}
    };

    空间复杂度为O(n),n为三角形的层数,时间复杂度为O(K),K为整个三角形中数字的个数。

  • 相关阅读:
    1582. Special Positions in a Binary Matrix
    623. Add One Row to Tree
    617. Merge Two Binary Trees
    643. Maximum Average Subarray I
    645. Set Mismatch
    1022. Sum of Root To Leaf Binary Numbers
    835. Image Overlap
    HDU Marriage is Stable (稳定婚姻匹配)
    HDU Stable Match (稳定婚姻匹配)
    HDU Maximum Clique (最大团)
  • 原文地址:https://www.cnblogs.com/riskyer/p/3327550.html
Copyright © 2020-2023  润新知