• 高精度、大整数幂取模


    格式为:

     cha^chb%c

    cha、chb均为字符串

    /*
     * FZU1759.cpp
     *
     *  Created on: 2011-10-11
     *      Author: bjfuwangzhu
     */
    #include<stdio.h>
    #include<string.h>
    #include<math.h>
    #include<stdlib.h>
    #define LL long long
    #define nnum 1000005
    #define nmax 31625
    int flag[nmax], prime[nmax];
    int plen;
    void mkprime() {
        int i, j;
        memset(flag, -1, sizeof(flag));
        for (i = 2, plen = 0; i < nmax; i++) {
            if (flag[i]) {
                prime[plen++] = i;
            }
            for (j = 0; (j < plen) && (i * prime[j] < nmax); j++) {
                flag[i * prime[j]] = 0;
                if (i % prime[j] == 0) {
                    break;
                }
            }
        }
    }
    int getPhi(int n) {
        int i, te, phi;
        te = (int) sqrt(n * 1.0);
        for (i = 0, phi = n; (i < plen) && (prime[i] <= te); i++) {
            if (n % prime[i] == 0) {
                phi = phi / prime[i] * (prime[i] - 1);
                while (n % prime[i] == 0) {
                    n /= prime[i];
                }
            }
        }
        if (n > 1) {
            phi = phi / n * (n - 1);
        }
        return phi;
    }
    int cmpBigNum(int p, char *ch) {
        int i, len;
        LL res;
        len = strlen(ch);
        for (i = 0, res = 0; i < len; i++) {
            res = (res * 10 + (ch[i] - '0'));
            if (res > p) {
                return 1;
            }
        }
        return 0;
    }
    int getModBigNum(int p, char *ch) {
        int i, len;
        LL res;
        len = strlen(ch);
        for (i = 0, res = 0; i < len; i++) {
            res = (res * 10 + (ch[i] - '0')) % p;
        }
        return (int) res;
    }
    int modular_exp(int a, int b, int c) {
        LL res, temp;
        res = 1 % c, temp = a % c;
        while (b) {
            if (b & 1) {
                res = res * temp % c;
            }
            temp = temp * temp % c;
            b >>= 1;
        }
        return (int) res;
    }
    void solve(int a, int c, char *ch) {
        int phi, res, b;
        phi = getPhi(c);
        if (cmpBigNum(phi, ch)) {
            b = getModBigNum(phi, ch) + phi;
        } else {
            b = atoi(ch);
        }
        res = modular_exp(a, b, c);
        printf("%d
    ", res);
    }
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("data.in", "r", stdin);
    #endif
        int a, c;
        char cha[nnum], chb[nnum];
        mkprime();
        while (~scanf("%s %s %d", cha, chb, &c)) {
            a = getModBigNum(c, cha);
            solve(a, c, chb);
        }
        return 0;
    }


  • 相关阅读:
    Spring Cloud云架构
    Spring Cloud云架构
    Spring Cloud云架构
    Spring Cloud云架构
    Spring Cloud Consul
    Spring Cloud Eureka
    构建Spring Cloud微服务分布式云架构
    数据库三范式
    redis3.0.0 集群安装详细步骤
    sql优化的几种方法
  • 原文地址:https://www.cnblogs.com/riskyer/p/3275763.html
Copyright © 2020-2023  润新知