• Pandas 操作


    一、Series的创建: 

    pd.Series([ 数据 ])

    In [17]: import pandas as pd
    
    In [18]: import numpy as np
    
    In [19]: s = pd.Series([1,1,1,1,np.nan])
    
    In [20]: s
    Out[20]:
    0    1.0
    1    1.0
    2    1.0
    3    1.0
    4    NaN
    dtype: float64

    二、生成DataFrame

    1,Numpy 产生随机数组

    In [17]: np.random.rand(5,5)  # 生成5 x 5 的数组
    Out[17]:
    array([[ 0.67935636,  0.75784959,  0.85428253,  0.73356   ,  0.60555467],
           [ 0.93576592,  0.81445114,  0.18213442,  0.4784346 ,  0.14720462],
           [ 0.57083505,  0.62618339,  0.13534874,  0.19513107,  0.7190744 ],
           [ 0.66931535,  0.50888897,  0.00685189,  0.16140523,  0.68407209],
           [ 0.91081342,  0.67702016,  0.32823171,  0.43670926,  0.98735408]])

    2,Pandas 生成连续日期

    In [18]: pd.date_range('20180101',periods=6)
    Out[18]:
    DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
                   '2018-01-05', '2018-01-06'],
                  dtype='datetime64[ns]', freq='D')

    3,生成带index和columns的DataFrame

    In [19]: df = pd.DataFrame(np.random.rand(6,4),index=pd.date_range('20180101',periods=6),columns=['a','b','c','d']) # 第一个参数为数据,第二个参数index为索引,第三个参数columns为列名
    
    In [20]: df
    Out[20]:
                       a         b         c         d
    2018-01-01  0.202113  0.205094  0.456936  0.535537
    2018-01-02  0.912747  0.812827  0.856495  0.872259
    2018-01-03  0.303067  0.832261  0.279915  0.297952
    2018-01-04  0.480393  0.315161  0.333675  0.072642
    2018-01-05  0.965324  0.561682  0.565189  0.503561
    2018-01-06  0.959792  0.227326  0.970319  0.757595

     4,Pandas 生成二维数组和一维数组

    In [6]: arr = np.arange(12) # 一维数组
    In [7]: arr
    Out[7]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

     In [9]: arr = np.arange(12).reshape(3,4)  # 二维数组

     In [10]: arr
     Out[10]:
     array([[ 0, 1, 2, 3],
     [ 4, 5, 6, 7],
     [ 8, 9, 10, 11]])

    5,生成一个没有定义index和column的DataFrame (如果没有定义,index和column则为数字)

    In [11]: df = pd.DataFrame(arr) # 直接将二维数组传入即可
    
    In [12]: df
    Out[12]:
       0  1   2   3
    0  0  1   2   3
    1  4  5   6   7
    2  8  9  10  11

    6,利用数组生成DataFrame

    In [13]: arr = {"a":[1]*3,"b":[2]*3,"c":[3]*3} # 定义数组
    In [14]: arr
    Out[14]: {'a': [1, 1, 1], 'b': [2, 2, 2], 'c': [3, 3, 3]}

    #生成DataFrame
    In [16]: df = pd.DataFrame(arr)
    In [17]:
    In [17]: df
    Out[17]:
       a  b  c
    0  1  2  3
    1  1  2  3
    2  1  2  3

    三、DataFrame的基本操作

    1,取某一列

    In [20]: df['a']
    Out[20]:
    0    1
    1    1
    2    1
    Name: a, dtype: int64

    2,查看数组类型dtypes

    In [21]: df.dtypes
    Out[21]:
    a    int64
    b    int64
    c    int64
    dtype: object

    3,查看索引index

    In [23]: df.index
    Out[23]: RangeIndex(start=0, stop=3, step=1)

    4,查看列cloumns

    In [24]: df.columns
    Out[24]: Index([u'a', u'b', u'c'], dtype='object')

    5,查看值values

    In [25]: df.values
    Out[25]:
    array([[1, 2, 3],
           [1, 2, 3],
           [1, 2, 3]], dtype=int64)

    6,查看数据的总结describe

    In [32]: df.describe()
    Out[32]:
             a    b    c
    count  3.0  3.0  3.0
    mean   1.0  2.0  3.0
    std    0.0  0.0  0.0
    min    1.0  2.0  3.0
    25%    1.0  2.0  3.0
    50%    1.0  2.0  3.0
    75%    1.0  2.0  3.0
    max    1.0  2.0  3.0

    7,翻转数据 transpose、T

    In [37]: df.transpose()
    Out[37]:
       0  1  2
    a  1  1  1
    b  2  2  2
    c  3  3  3
    
    In [38]: df.T
    Out[38]:
       0  1  2
    a  1  1  1
    b  2  2  2
    c  3  3  3

    四,对DataFrame的索引(index)进行排序

    df.sort_index(axis=0,ascending=True) #axis为0代表对行排序1代表对列。ascending为True代表正序,False代表反序

    # 行,正序
    In [43]: df.sort_index(axis=0,ascending=True)
    Out[43]:
       a  b  c
    0  1  2  3
    1  1  2  3
    2  1  2  3

    # 行,反序

    In [44]: df.sort_index(axis=0,ascending=False)
    Out[44]:
       a  b  c
    2  1  2  3
    1  1  2  3
    0  1  2  3

    #列,正序

    In [46]: df.sort_index(axis=1,ascending=True)
    Out[46]:
       a  b  c
    0  1  2  3
    1  1  2  3
    2  1  2  3

    #列,反序

    In [45]: df.sort_index(axis=1,ascending=False)
    Out[45]:
       c  b  a
    0  3  2  1
    1  3  2  1
    2  3  2  1

    五,对DataFrame的值(values)进行排序

    # F列,正序
    In [205]: df.sort_values(by='F',ascending=True) # by 是根据某列排序,ascending代表的是正序或者反序 Out[205]: A B C D E F 2013-01-01 0 1 2 3 NaN 11 2013-01-02 0 0 0 0 NaN 22 2013-01-03 0 0 0 0 NaN 33 2013-01-04 0 0 0 0 NaN 44 2013-01-05 0 0 0 0 NaN 55 2013-01-06 0 0 0 0 NaN 66
    # F列,反序 In [
    206]: df.sort_values(by='F',ascending=False) Out[206]: A B C D E F 2013-01-06 0 0 0 0 NaN 66 2013-01-05 0 0 0 0 NaN 55 2013-01-04 0 0 0 0 NaN 44 2013-01-03 0 0 0 0 NaN 33 2013-01-02 0 0 0 0 NaN 22 2013-01-01 0 1 2 3 NaN 11

    六,对DataFrame数据进行选择

    1,简单筛选 df.A = df['A']

    # 生成一个DataFrame
    In [58]: dates = pd.date_range('20130101', periods=6) ...: df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D']) ...:

    In [63]: df.A
    Out[63]:
    2013-01-01     0
    2013-01-02     4
    2013-01-03     8
    2013-01-04    12
    2013-01-05    16
    2013-01-06    20
    Freq: D, Name: A, dtype: int32
    
    In [64]: df['A']
    Out[64]:
    2013-01-01     0
    2013-01-02     4
    2013-01-03     8
    2013-01-04    12
    2013-01-05    16
    2013-01-06    20
    Freq: D, Name: A, dtype: int32

    2,按索引或者索引下标进行筛选

    In [60]: df[0:3]  # 按照索引进行筛选
    Out[60]:
                A  B   C   D
    2013-01-01  0  1   2   3
    2013-01-02  4  5   6   7
    2013-01-03  8  9  10  11
    
    In [61]: df['20130101':'20130102']  # 按照索引下标值进行筛选
    Out[61]:
                A  B  C  D
    2013-01-01  0  1  2  3
    2013-01-02  4  5  6  7

    3,使用loc进行标签筛选 df.loc['行',[列]]

          列的格式为list,其中 : 代表全部。行只能筛选一行,列能筛选多列

    # 只有行
    In [66]: df.loc['20130102'] # 只有一个参数,默认是对行 Out[66]: A 4 B 5 C 6 D 7 Name: 2013-01-02 00:00:00, dtype: int32

    # 只有列
    In [71]: df.loc[:,['A']]
    Out[71]:
                 A
    2013-01-01   0
    2013-01-02   4
    2013-01-03   8
    2013-01-04  12
    2013-01-05  16
    2013-01-06  20
    # 全部行,特定列
    In [72]: df.loc[:,['A','B','C']]
    Out[72]:
                 A   B   C
    2013-01-01   0   1   2
    2013-01-02   4   5   6
    2013-01-03   8   9  10
    2013-01-04  12  13  14
    2013-01-05  16  17  18
    2013-01-06  20  21  22
    # 全部列,特定行(只能筛选一行)
    In [81]: df.loc['20130101',:]
    Out[81]:
    A    0
    B    1
    C    2
    D    3
    Name: 2013-01-01 00:00:00, dtype: int32
    # 特定列,特定行
    In [82]: df.loc['20130101',['A','B','C']]
    Out[82]:
    A    0
    B    1
    C    2
    Name: 2013-01-01 00:00:00, dtype: int32

    4,使用iloc进行位置筛选 df.loc[[行],[列]]

          行和列的格式为list,其中 : 代表全部。这里的取值并不是list中的范围,例如 [0:5] 并不代表第0条到第5条,而是代表第0条和第5条

    In [90]: df.iloc[[0,1],[0,3]]
    Out[90]:
                A  D
    2013-01-01  0  3
    2013-01-02  4  7
    
    In [91]: df.iloc[[1],[0,3]]
    Out[91]:
                A  D
    2013-01-02  4  7
    
    In [92]: df.iloc[[2,4],[0,3]]
    Out[92]:
                 A   D
    2013-01-03   8  11
    2013-01-05  16  19

     5,使用ix进行混合选择

    # 前三行,A,B列
    In [111]: df.ix[:3,['A','B']]   
    Out[111]:
                A  B
    2013-01-01  0  1
    2013-01-02  4  5
    2013-01-03  8  9
    # 前三行,前两列
    In [112]: df.ix[:3,:2]
    Out[112]:
                A  B
    2013-01-01  0  1
    2013-01-02  4  5
    2013-01-03  8  9
    # 20130101 行,A,B列
    In [113]: df.ix['20130101',['A','B']]
    Out[113]:
    A    0
    B    1
    Name: 2013-01-01 00:00:00, dtype: int32

    总结 : 使用loc以及,ix对DataFrame的行和列的操作的时候,如果对行的筛选条件为名称筛选,那么只能筛选一行

    例如: 

    df.loc['20130101',['A','B','C']]
    df.ix['20130101',['A','B']]

    6,使用判断进行筛选

    In [125]: df[df['A']>8]  # A列的值大于8
    Out[125]:
                 A   B   C   D
    2013-01-04  12  13  14  15
    2013-01-05  16  17  18  19
    2013-01-06  20  21  22  23
    
    In [126]: df[df.iloc[:]>8]  # 所有的值大于8
    Out[126]:
                   A     B     C     D
    2013-01-01   NaN   NaN   NaN   NaN
    2013-01-02   NaN   NaN   NaN   NaN
    2013-01-03   NaN   9.0  10.0  11.0
    2013-01-04  12.0  13.0  14.0  15.0
    2013-01-05  16.0  17.0  18.0  19.0
    2013-01-06  20.0  21.0  22.0  23.0

    七,为DataFrame设置新的值

    1,iloc定位赋值

    In [136]: df  # 先查看df
    Out[136]:
                 A   B   C   D
    2013-01-01   0   1   2   3
    2013-01-02   4   5   6   7
    2013-01-03   8   9  10  11
    2013-01-04  12  13  14  15
    2013-01-05  16  17  18  19
    2013-01-06  20  21  22  23
    
    In [137]: df.iloc[0,0] # 定位第0行第0个元素
    Out[137]: 0
    
    In [138]: df.iloc[0,0] = 10 # 将第0行第0个元素的值赋为10
    
    In [139]: df  # 查看结果
    Out[139]:
                 A   B   C   D
    2013-01-01  10   1   2   3
    2013-01-02   4   5   6   7
    2013-01-03   8   9  10  11
    2013-01-04  12  13  14  15
    2013-01-05  16  17  18  19
    2013-01-06  20  21  22  23

    2,loc定位赋值

    In [140]: df.loc['20130101','A'] # 定位行为'20130101',列为'A'的元素
    Out[140]: 10
    
    In [141]: df.loc['20130101','A'] = 0 # 将值赋为0
    
    In [142]: df # 查看结果
    Out[142]:
                 A   B   C   D
    2013-01-01   0   1   2   3
    2013-01-02   4   5   6   7
    2013-01-03   8   9  10  11
    2013-01-04  12  13  14  15
    2013-01-05  16  17  18  19
    2013-01-06  20  21  22  23

    3,使用判断赋值

    In [156]: df[df.B>4]=0 # B列的值大于4,就将值赋为0
    
    In [157]: df
    Out[157]:
                A  B  C  D
    2013-01-01  0  1  2  3
    2013-01-02  0  0  0  0
    2013-01-03  0  0  0  0
    2013-01-04  0  0  0  0
    2013-01-05  0  0  0  0
    2013-01-06  0  0  0  0

    4,新增一列,并赋值为NaN

    In [159]: df['E']=np.nan  # 新增一列 E ,并且赋值
    
    In [160]: df
    Out[160]:
                A  B  C  D   E
    2013-01-01  0  1  2  3 NaN
    2013-01-02  0  0  0  0 NaN
    2013-01-03  0  0  0  0 NaN
    2013-01-04  0  0  0  0 NaN
    2013-01-05  0  0  0  0 NaN
    2013-01-06  0  0  0  0 NaN

    5,新增一列,并赋值

    In [163]: df['F'] = pd.Series([11,22,33,44,55,66,], index=pd.date_range('20130101',periods=6))
    
    In [164]: df
    Out[164]:
                A  B  C  D   E   F
    2013-01-01  0  1  2  3 NaN  11
    2013-01-02  0  0  0  0 NaN  22
    2013-01-03  0  0  0  0 NaN  33
    2013-01-04  0  0  0  0 NaN  44
    2013-01-05  0  0  0  0 NaN  55
    2013-01-06  0  0  0  0 NaN  66

    八,DataFrame处理NaN

    1,直接删除含有NaN的行或列

    In [181]: df
    Out[181]:
                A  B  C  D   E   F
    2013-01-01  0  1  2  3 NaN  11
    2013-01-02  0  0  0  0 NaN  22
    2013-01-03  0  0  0  0 NaN  33
    2013-01-04  0  0  0  0 NaN  44
    2013-01-05  0  0  0  0 NaN  55
    2013-01-06  0  0  0  0 NaN  66
    
    In [182]: df.dropna(axis=0,how='any') # 0: 对行进行操作; 1: 对列进行操作 how='any' ,'any': 只要存在 NaN 就 drop 掉; 'all': 必须全部是 NaN 才 drop 。不会对原DataFrame操作,会返回一个新的DataFrame
    Out[182]: Empty DataFrame Columns: [A, B, C, D, E, F] Index: []  # 返回的结果

    2,将值为NaN的值替换为指定的值

    In [186]: df.fillna(value=10)  # 放值为NaN时,将值设置10
    Out[186]:
                A  B  C  D     E   F
    2013-01-01  0  1  2  3  10.0  11
    2013-01-02  0  0  0  0  10.0  22
    2013-01-03  0  0  0  0  10.0  33
    2013-01-04  0  0  0  0  10.0  44
    2013-01-05  0  0  0  0  10.0  55
    2013-01-06  0  0  0  0  10.0  66

    3,返回布尔值(为NaN则返回True,反之返回False)

    In [187]: df.isnull()
    Out[187]:
                    A      B      C      D     E      F
    2013-01-01  False  False  False  False  True  False
    2013-01-02  False  False  False  False  True  False
    2013-01-03  False  False  False  False  True  False
    2013-01-04  False  False  False  False  True  False
    2013-01-05  False  False  False  False  True  False
    2013-01-06  False  False  False  False  True  False

    4,检测数据中是否存在NaN

    In [193]: np.any(df.isnull()) == True
    Out[193]: True

    九,文件的读取和操作

    1,读取Excel或者csv

     pd.read_csv('test.csv',encoding='utf-8')
     pd.read_excel('test.xlsx',encoding='utf-8')

    2,将结果写入pickle

    data.to_pickle('test.pickle')

    十,读取文件拓展(写为函数)

    1,读取文件

    def get_dataframe_by_file(abs_filename, skiprows=0, nrows=None):
        ext = os.path.splitext(abs_filename)[1].lower()
        if ext == '.csv':
            try:
                df = pd.read_csv(abs_filename, encoding='utf8', skiprows=skiprows, nrows=nrows)
            except UnicodeDecodeError:
                df = pd.read_csv(abs_filename, encoding='gb18030', skiprows=skiprows, nrows=nrows)
        elif ext in ['.xlsx', '.xls']:
            df = pd.read_excel(abs_filename, skiprows=skiprows, nrows=nrows)
        else:
            raise Exception('not supported yet')
        return df

    2,将数据转为utf-8

    def convert_csv_to_utf8(csv_file):
        newpath = os.path.join(DATA_FILE_PATH, 'csvdata_utf8')
        if not os.path.exists(newpath):
            os.makedirs(newpath)
        basename = os.path.basename(csv_file)
        newname = os.path.join(newpath, basename)
        file(newname, 'wb').write(
            file(csv_file).read().decode('gb18030').encode('utf-8'))
        return newname

    十一,Panads DataFrame合并

    1,concat合并行

    In [207]: df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])
         ...: df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d'])
         ...: df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d'])
         ...:
    
    In [208]:
    
    In [208]:
    
    In [208]: df1
    Out[208]:
         a    b    c    d
    0  0.0  0.0  0.0  0.0
    1  0.0  0.0  0.0  0.0
    2  0.0  0.0  0.0  0.0
    
    In [209]: df2
    Out[209]:
         a    b    c    d
    0  1.0  1.0  1.0  1.0
    1  1.0  1.0  1.0  1.0
    2  1.0  1.0  1.0  1.0
    
    In [210]: df3
    Out[210]:
         a    b    c    d
    0  2.0  2.0  2.0  2.0
    1  2.0  2.0  2.0  2.0
    2  2.0  2.0  2.0  2.0
    
    In [211]: re = pd.concat([df1,df2,df3],axis=0)  # pd.concat([DataFrame列表],axis=0) axis=0代表行合并,1代表列合并。合并后index是重复的,可使用ignore_index = True让索引不重复pd.concat([df1, df2, df3], axis=0, ignore_index=True)
    In [212]: re
    Out[212]:
         a    b    c    d
    0  0.0  0.0  0.0  0.0
    1  0.0  0.0  0.0  0.0
    2  0.0  0.0  0.0  0.0
    0  1.0  1.0  1.0  1.0
    1  1.0  1.0  1.0  1.0
    2  1.0  1.0  1.0  1.0
    0  2.0  2.0  2.0  2.0
    1  2.0  2.0  2.0  2.0
    2  2.0  2.0  2.0  2.0
    
    In [213]:

    2,concat合并列

    In [213]: re = pd.concat([df1,df2,df3],axis=1)
    
    In [214]: re
    Out[214]:
         a    b    c    d    a    b    c    d    a    b    c    d
    0  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
    1  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0
    2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0  2.0  2.0  2.0  2.0

    3,concat join='outer' 合并(相同的columns或者index进行合并,独自的index或者columns自成行或列。没有值的为NaN)

    # 先准备两个df
    In [227]: df1 Out[227]: a b c d 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 In [228]: df2 Out[228]: b c d e 2 1.0 1.0 1.0 1.0 3 1.0 1.0 1.0 1.0 4 1.0 1.0 1.0 1.0

    # join = 'outer',axis = 0 合并 (可以理解为按照行取并集合并)

    In [231]: re = pd.concat([df1,df2],axis=0,join='outer',ignore_index=True)
    
    In [232]: re
    Out[232]:
         a    b    c    d    e
    0  0.0  0.0  0.0  0.0  NaN
    1  0.0  0.0  0.0  0.0  NaN
    2  0.0  0.0  0.0  0.0  NaN
    3  NaN  1.0  1.0  1.0  1.0
    4  NaN  1.0  1.0  1.0  1.0
    5  NaN  1.0  1.0  1.0  1.0

    # join = 'outer',axis = 1 合并 (可以理解为按照列取交集进行合并)

    In [233]: re = pd.concat([df1,df2],axis=1,join='outer',ignore_index=True)
    
    In [234]: re
    Out[234]:
         0    1    2    3    4    5    6    7
    1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
    2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
    3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
    4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0

    4,concat join='inner' 合并(相同的columns或者index进行合并,独自的index或者columns自成行或列。没有值的为NaN)

    # 准备两个df
    In [240]: df1
    Out[240]:
         a    b    c    d
    1  0.0  0.0  0.0  0.0
    2  0.0  0.0  0.0  0.0
    3  0.0  0.0  0.0  0.0
    
    In [241]: df2
    Out[241]:
         b    c    d    e
    2  1.0  1.0  1.0  1.0
    3  1.0  1.0  1.0  1.0
    4  1.0  1.0  1.0  1.0

    # join = 'inner', axis = 0 合并(相当于行取交集进行合并)

    In [235]: re = pd.concat([df1,df2],axis=0,join='inner',ignore_index=True)
    
    In [236]: re
    Out[236]:
         b    c    d
    0  0.0  0.0  0.0
    1  0.0  0.0  0.0
    2  0.0  0.0  0.0
    3  1.0  1.0  1.0
    4  1.0  1.0  1.0
    5  1.0  1.0  1.0

    # join = 'inner', axis = 1 合并(相当于列取交集进行合并)  

    In [237]: re = pd.concat([df1,df2],axis=1,join='inner',ignore_index=True)
    
    In [238]: re
    Out[238]:
         0    1    2    3    4    5    6    7
    2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
    3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0

    5,concat  join_axes合并(可以按照某个DataFrame的index或者columns进行合并) 

    # 准备两个df
    In [253]: df1
    Out[253]:
         a    b    c    d
    1  0.0  0.0  0.0  0.0
    2  0.0  0.0  0.0  0.0
    3  0.0  0.0  0.0  0.0
    
    In [254]: df2
    Out[254]:
         b    c    d    e
    2  1.0  1.0  1.0  1.0
    3  1.0  1.0  1.0  1.0
    4  1.0  1.0  1.0  1.0

    # 按照df1的index进行合并

    In [255]: res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])  # 这里需要注意,join_axes是要进行合并的某个df的index或者columns,axis=1 代表行。这里需要同步,既,后面为index,axis为1,后面为columns,axis为0
    
    In [256]: res
    Out[256]:
         a    b    c    d    b    c    d    e
    1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
    2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
    3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0

    # 按照df2的columns进行合并

    In [257]: res = pd.concat([df1, df2], axis=0, join_axes=[df1.columns])
    
    In [258]: res
    Out[258]:
         a    b    c    d
    1  0.0  0.0  0.0  0.0
    2  0.0  0.0  0.0  0.0
    3  0.0  0.0  0.0  0.0
    2  NaN  1.0  1.0  1.0
    3  NaN  1.0  1.0  1.0
    4  NaN  1.0  1.0  1.0

    6,append追加合并(追加只能行合并,不能列合并)

    # 创建两个df
    In [263]: df1
    Out[263]:
         a    b    c    d
    0  0.0  0.0  0.0  0.0
    1  0.0  0.0  0.0  0.0
    2  0.0  0.0  0.0  0.0
    
    In [264]: df2
    Out[264]:
         a    b    c    d
    0  1.0  1.0  1.0  1.0
    1  1.0  1.0  1.0  1.0
    2  1.0  1.0  1.0  1.0

    # 进行append操作

    In [265]: res = df1.append(df2, ignore_index=True)
    
    In [266]: res
    Out[266]:
         a    b    c    d
    0  0.0  0.0  0.0  0.0
    1  0.0  0.0  0.0  0.0
    2  0.0  0.0  0.0  0.0
    3  1.0  1.0  1.0  1.0
    4  1.0  1.0  1.0  1.0
    5  1.0  1.0  1.0  1.0
    更多内容,可访问:http://rexyan.cn
  • 相关阅读:
    图片无缝横向滚动
    MySQL命令小结
    Git初级
    VS2012 创建的entityframework 4.1版本
    IE10 下系统出现Unable to get property 'PageRequestManager' of undefined or null reference错误
    MIME Types
    不兼容的数据类型
    使用Lambda .map函数将入参List转换至其它List
    MySQL中那种数据类型是只有true和false的
    ELK Stack
  • 原文地址:https://www.cnblogs.com/rexyan/p/7295602.html
Copyright © 2020-2023  润新知