• luoguP3714 [BJOI2017]树的难题 点分治


    以后传数组绝对用指针...

    考虑点分治

    在点分的时候,把相同的颜色的在一起合并

    之后,把不同颜色依次合并

    我们可以用单调队列做到单次合并$O(n + m)$

    如果我们按照深度大小来合并,那么由于每次都是把大的往小的去合并

    因此,合并$n$的序列最多需要$2n$的势能

    因此,最终我们就能达到$O(n log n)$的统计复杂度

    然而还有排序,所以实际复杂度$O(n log^2 n)$,排序常数很小,自然能过

    #include <set>
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    namespace remoon {
        #define re register
        #define de double
        #define le long double
        #define ri register int
        #define ll long long
        #define sh short
        #define pii pair<int, int>
        #define mp make_pair
        #define pb push_back
        #define fi first
        #define se second
        #define tpr template <typename ra>
        #define rep(iu, st, ed) for(ri iu = st; iu <= ed; iu ++)
        #define drep(iu, ed, st) for(ri iu = ed; iu >= st; iu --)    
        #define gc getchar
        inline int read() {
            int p = 0, w = 1; char c = gc();
            while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
            while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
            
            return p * w;
        }
        int wr[50], rw;
        #define pc(iw) putchar(iw)
        tpr inline void write(ra o, char c = '
    ') {
            if(!o) pc('0');
            if(o < 0) o = -o, pc('-');
            while(o) wr[++ rw] = o % 10, o /= 10;
            while(rw) pc(wr[rw --] + '0');
            pc(c);
        }
        tpr inline void cmin(ra &a, ra b) { if(a > b) a = b; }
        tpr inline void cmax(ra &a, ra b) { if(a < b) a = b; } 
        tpr inline bool ckmin(ra &a, ra b) { return (a > b) ? a = b, 1 : 0; }
        tpr inline bool ckmax(ra &a, ra b) { return (a < b) ? a = b, 1 : 0; }
    }
    using namespace std;
    using namespace remoon;
    
    #define sid 400050
    #define inf 1e9
    
    int n, m, l, r, rt, asz, cnp, ans = -2e9;
    int over[sid], son[sid], sz[sid], dep[sid], col[sid];
    int cap[sid], nxt[sid], node[sid], cv[sid];
    
    inline void addedge(int u, int v, int c) {
        nxt[++ cnp] = cap[u]; cap[u] = cnp;
        node[cnp] = v; col[cnp] = c;
    }
    
    struct Ans { 
        int f[sid], end;
    } nowc, prec, now;
    
    inline void init(Ans &a) { 
        rep(i, 0, a.end) a.f[i] = -inf; 
        a.end = 0;
    }
    
    inline void upd(Ans &a, Ans &b) {
        int len = max(a.end, b.end); a.end = len;
        rep(i, 0, len) {
            cmax(a.f[i], b.f[i]);
            if(l <= i && i <= r) cmax(ans, a.f[i]);
        }
    }
    
    int q[sid];
    inline void qry(Ans &a, Ans &b, int opt = 0) {
        if(l == 1 && r == n - 1) {
            int mx1 = -inf, mx2 = -inf;
            rep(i, 0, a.end) cmax(mx1, a.f[i]);
            rep(j, 0, b.end) cmax(mx2, b.f[j]);
            cmax(ans, mx1 + mx2 - opt);
        }
        else {
            int fr = 1, to = 0;
            drep(i, min(r, b.end), l) {
                while(fr <= to && b.f[i] >= b.f[q[to]]) to --;
                q[++ to] = i;
            }
            rep(i, 0, a.end) {
                if(l - i >= 0) {
                    while(fr <= to && b.f[l - i] >= b.f[q[to]]) to --;
                    q[++ to] = l - i;
                }
                while(fr <= to && q[fr] > r - i) fr ++;
                if(fr <= to) cmax(ans, a.f[i] + b.f[q[fr]] - opt);
            }
        }
    }
    
    int vis[sid], tim;
    vector <pii> all, c[sid];
    
    #define cur node[i]
    inline void grt(int o, int fa) {
        sz[o] = 1; son[o] = 0; 
        for(int i = cap[o]; i; i = nxt[i]) 
        if(!over[cur] && cur != fa){
            grt(cur, o); sz[o] += sz[cur];
            cmax(son[o], sz[cur]);
        }
        cmax(son[o], asz - sz[o]);
        if(son[o] < son[rt]) rt = o;
    }
    
    inline int gh(int o, int fa) {
        int tmp = dep[o];
        for(ri i = cap[o]; i; i = nxt[i])
        if(cur != fa && !over[cur]) {
            dep[cur] = dep[o] + 1;
            cmax(tmp, gh(cur, o));
        }
        return tmp;
    }
    
    inline void gt(int o, int fa, int val, int lst) {
        sz[o] = 1;
        for(int i = cap[o]; i; i = nxt[i])
        if(!over[cur] && cur != fa) {
            int C = col[i];
            int nxt = (C == lst) ? 0 : cv[C];
            gt(cur, o, val + nxt, C);
            sz[o] += sz[cur];
        }
        cmax(now.end, dep[o]);
        cmax(now.f[dep[o]], val);
    }
    
    inline void solve(int o) {    
    
        over[o] = 1; ++ tim;
        for(int i = cap[o]; i; i = nxt[i]) 
        if(!over[cur]) {
            int C = col[i];
            if(vis[C] != tim) c[C].clear();
            vis[C] = tim; dep[cur] = 1;
            c[C].pb(mp(gh(cur, o), cur));
        }
        ++ tim;
        all.clear();
        for(int i = cap[o]; i; i = nxt[i])
        if(!over[cur]) {
            int C = col[i];
            if(vis[C] != tim) {
                vis[C] = tim; 
                sort(c[C].begin(), c[C].end());
                int len = c[C][c[C].size() - 1].fi;
                all.pb(mp(len, C));
            }
        }
        sort(all.begin(), all.end());
        
        init(prec);
        for(auto x : all) {
            int C = x.se; init(nowc);
            for(auto y : c[C]) {
                init(now); gt(y.se, o, cv[C], C); 
                qry(now, nowc, cv[C]); upd(nowc, now);
            }
            qry(prec, nowc); upd(prec, nowc);
        }
        
        for(int i = cap[o]; i; i = nxt[i])
        if(!over[cur]) {
            asz = sz[cur]; rt = 0;
            grt(cur, o); solve(rt);
        }
    }
    
    int main() {
        n = read(); m = read(); 
        l = read(); r = read();
        rep(i, 1, m) cv[i] = read();
        rep(i, 2, n) {
            int u = read(), v = read(), w = read();
            addedge(u, v, w); addedge(v, u, w);
        }
        rep(i, 0, n) now.f[i] = -inf;
        rep(i, 0, n) prec.f[i] = -inf;
        rep(i, 0, n) nowc.f[i] = -inf;
        asz = n; son[0] = n;
        grt(1, 0); solve(rt);
        write(ans);
        return 0;
    }
  • 相关阅读:
    【Selenium04篇】python+selenium实现Web自动化:文件上传,Cookie操作,调用 JavaScript,窗口截图
    【Selenium03篇】python+selenium实现Web自动化:元素三类等待,多窗口切换,警告框处理,下拉框选择
    【Selenium02篇】python+selenium实现Web自动化:鼠标操作和键盘操作!
    【Selenium01篇】python+selenium实现Web自动化:搭建环境,Selenium原理,定位元素以及浏览器常规操作!
    面试官看到一定会打我---软件测试工程师面试套路和暗语灵魂解密
    十年测试老鸟告诉你--自动化测试选JAVA还是选Python--写给还在迷茫中的朋友
    华为十年测试老鸟教您如何便写高质量的自动化测试工程师简历--看完必有所获
    工作中常用的Android系统ADB命令收集
    自动化测试中的三类等待深入剥析
    JAVA自动化之Junit单元测试框架详解
  • 原文地址:https://www.cnblogs.com/reverymoon/p/9799047.html
Copyright © 2020-2023  润新知