题目大意:
可以选择在一堆石子中拿一些石子
或者把一堆石子划分成两个非空的石子堆
问先手必胜?
模板题
一个规律是(n = 4m + k)时
(sg(n) = n - 1(k = 0))
(sg(n) = n(k = 1, k = 2))
(sg(n) = n + 1(k = 3))
考虑证明:
对于({1, 2, 3, 4, 5, 6, 7, 8}),都是成立的
考虑对于(4n, 4n + 1, 4n + 2, 4n + 3)四个归纳
首先,这四个数可以取(1 sim 4n - 1)中所有数的(sg)值
也就是除了(1 sim 4n)中,除了(4n - 1)之外的所有数都会在后继状态的(sg)中出现
- 对于(sg(4n))
只需证明,不存在两个数,(a + b = 4n),并且(sg(a) oplus sg(b) = 4n - 1)
设(a = 4k + 1),那么(sg(a) oplus sg(b) = (4k + 1) oplus (4n - 4k)),这时(a oplus b)的末两位为(1),不可能
设(a = 4k + 2),那么(sg(a) oplus sg(b) = (4k + 2) oplus (4n - 4k - 2)),这时末两位为(2 oplus 2 = 0),也不可能
设(a = 4k + 3),那么(sg(a) oplus sg(b) = (4k + 4) oplus (4n - 4k - 4)),末两位为(0),不可能
设(a = 4k + 4),那么(sg(a) oplus sg(b) = (4k + 3) oplus (4n - 4k - 3)),末两位为(3 oplus 1 = 2),不可能
因此,(sg(4n) = 4n - 1)
- 对于(sg(4n + 1))
类似的归纳不存在两个数,(a, b),满足(a + b = 4n + 1),且(sg(a) oplus sg(b) = 4n + 1)
- 对于(sg(4n + 2))和(sg(4n + 3))同理
只需要(16)次讨论即可
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
inline int get(int o) {
int m = o & 3;
if(m == 0) return o - 1;
if(m == 1 || m == 2) return o;
if(m == 3) return o + 1;
}
int main() {
int T = read();
while(T --) {
int n = read(), sg = 0;
rep(i, 1, n) sg ^= get(read());
if(sg) printf("Alice
");
else printf("Bob
");
}
}