#!/usr/bin/env python
import sys
import os.path
# This is a tiny script to help you creating a CSV file from a face
# database with a similar hierarchie:
#
# philipp@mango:~/facerec/data/at$ tree
# .
# |-- README
# |-- s1
# | |-- 1.pgm
# | |-- ...
# | |-- 10.pgm
# |-- s2
# | |-- 1.pgm
# | |-- ...
# | |-- 10.pgm
# ...
# |-- s40
# | |-- 1.pgm
# | |-- ...
# | |-- 10.pgm
#
if __name__ == "__main__":
# if len(sys.argv) != 2:
# print("usage: create_csv <base_path>")
# sys.exit(1)
BASE_PATH = "E:/DeskTop/FaceOpencv/FaceResource/att_faces_pgm"
SEPARATOR = ";"
fh = open("E:/DeskTop/FaceOpencv/FaceResource/att_faces_pgm/at.txt", 'w')
label = 0
for dirname, dirnames, filenames in os.walk(BASE_PATH):
for subdirname in dirnames:
subject_path = os.path.join(dirname, subdirname)
for filename in os.listdir(subject_path):
abs_path = "%s/%s" % (subject_path, filename)
print("%s%s%d" % (abs_path, SEPARATOR, label))
fh.write(abs_path)
fh.write(SEPARATOR)
fh.write(str(label))
fh.write("
")
label = label + 1
fh.close()
1、获取人脸图像时,直接获取的大小与官方给出的模型大小一直进行保存
https://blog.csdn.net/qq_42449351/article/details/99052241?utm_medium=distribute.pc_relevant.none-task-blog-2
#include <iostream>
#include <opencv2opencv.hpp>
#include <vector>
#include<stdio.h>
using namespace std;
using namespace cv;
int main()
{
CascadeClassifier cascada;
//将opencv官方训练好的人脸识别分类器拷贝到自己的工程目录中
cascada.load("F:\video\pic\haarcascade_frontalface_alt2.xml");
VideoCapture cap(0); //0表示电脑自带的,如果用一个外接摄像头,将0变成1
Mat frame, myFace;
int pic_num = 1;
while (1) {
//摄像头读图像
cap >> frame;
vector<Rect> faces;//vector容器存检测到的faces
Mat frame_gray;
cvtColor(frame, frame_gray, COLOR_BGR2GRAY);//转灰度化,减少运算
cascada.detectMultiScale(frame_gray, faces, 1.1, 4, CV_HAAR_DO_ROUGH_SEARCH, Size(70, 70), Size(1000, 1000));
printf("检测到人脸个数:%d
", faces.size());
//识别到的脸用矩形圈出
for (int i = 0; i < faces.size(); i++)
{
rectangle(frame, faces[i], Scalar(255, 0, 0), 2, 8, 0);
}
//当只有一个人脸时,开始拍照
if (faces.size() == 1)
{
Mat faceROI = frame_gray(faces[0]);//在灰度图中将圈出的脸所在区域裁剪出
//cout << faces[0].x << endl;//测试下face[0].x
resize(faceROI, myFace, Size(92, 112));//将兴趣域size为92*112
putText(frame, to_string(pic_num), faces[0].tl(), 3, 1.2, (0, 0, 225), 2, 0);//在 faces[0].tl()的左上角上面写序号
string filename = format("F:\video\%d.jpg", pic_num); //图片的存放位置,frmat的用法跟QString差不对
imwrite(filename, myFace);//存在当前目录下
imshow(filename, myFace);//显示下size后的脸
waitKey(500);//等待500us
destroyWindow(filename);//:销毁指定的窗口
pic_num++;//序号加1
if (pic_num == 11)
{
return 0;//当序号为11时退出循环,一共拍10张照片
}
}
int c = waitKey(10);
if ((char)c == 27) { break; } //10us内输入esc则退出循环
imshow("frame", frame);//显示视频流
waitKey(100);//等待100us
}
return 0;
}
2、获取到一个大小的人脸图像,人后利用代码自己进行分割处理
https://blog.csdn.net/shangpapa3/article/details/60763634?utm_medium=distribute.pc_relevant.none-task-blog-2defaultbaidujs_baidulandingword~default-0.no_search_link&spm=1001.2101.3001.4242
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/objdetect/objdetect.hpp>
using namespace cv;
int main()
{
char file_img[160];
Mat t_img[160];
vector<Rect> faces;
CascadeClassifier face_cascade;
face_cascade.load("haarcascade_frontalface_alt.xml");
//Size dst_size;
//读取训练样本
for (int i = 0; i < 160; i++)
{
Mat img_gray;
int d = i + 1;
sprintf(file_img, "C:\Users\Apple\Desktop\头2\%d.jpg", d);
Mat img = imread(file_img, 1);
cvtColor(img, img_gray, COLOR_BGR2GRAY);
equalizeHist(img_gray, img_gray);
//-- Detect faces;
//检测人脸
face_cascade.detectMultiScale(img_gray, faces, 1.1, 3, CV_HAAR_DO_CANNY_PRUNING, Size(60, 60),Size(240,240));
if (faces.size() == 0)
{
continue;
}
Mat faceROI = img(faces[0]);
Mat MyFace;
resize(faceROI, MyFace, Size(90, 112));
cvtColor(MyFace, MyFace, COLOR_BGR2GRAY);
string str = format("C:\Users\Apple\Desktop\头3\%d.jpg", d);
imwrite(str, MyFace);
imshow("ii", MyFace);
waitKey(10);
}
}