1.遇到时间复杂度高的算法,return无法返回参数。
解决方案:throw new illegalArgumentException.
2.数组复习
new int[]{arg1,arg2,arg3,arg4};
方法二:两遍哈希表 为了对运行时间复杂度进行优化,我们需要一种更有效的方法来检查数组中是否存在目标元素。如果存在,我们需要找出它的索引。保持数组中的每个元素与其索引相互对应的最好方法是什么?哈希表。 通过以空间换取速度的方式,我们可以将查找时间从 O(n)O(n) 降低到 O(1)O(1)。哈希表正是为此目的而构建的,它支持以 近似 恒定的时间进行快速查找。我用“近似”来描述,是因为一旦出现冲突,查找用时可能会退化到 O(n)O(n)。但只要你仔细地挑选哈希函数,在哈希表中进行查找的用时应当被摊销为 O(1)O(1)。 一个简单的实现使用了两次迭代。在第一次迭代中,我们将每个元素的值和它的索引添加到表中。然后,在第二次迭代中,我们将检查每个元素所对应的目标元素(target - nums[i]target−nums[i])是否存在于表中。注意,该目标元素不能是 nums[i]nums[i] 本身! Java class Solution { public int[] twoSum(int[] nums, int target) { Map<Integer, Integer> map = new HashMap<>(); for (int i = 0; i < nums.length; i++) { map.put(nums[i], i); } for (int i = 0; i < nums.length; i++) { int complement = target - nums[i]; if (map.containsKey(complement) && map.get(complement) != i) { return new int[] { i, map.get(complement) }; } } throw new IllegalArgumentException("No two sum solution"); } } 复杂度分析: 时间复杂度:O(n)O(n), 我们把包含有 nn 个元素的列表遍历两次。由于哈希表将查找时间缩短到 O(1)O(1) ,所以时间复杂度为 O(n)O(n)。 空间复杂度:O(n)O(n), 所需的额外空间取决于哈希表中存储的元素数量,该表中存储了 nn 个元素。 作者:LeetCode 链接:https://leetcode-cn.com/problems/two-sum/solution/liang-shu-zhi-he-by-leetcode-2/ 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。