MIT自然语言处理第三讲:概率语言模型(第三部分)
自然语言处理:概率语言模型
Natural Language Processing: Probabilistic Language Modeling
作者:Regina Barzilay(MIT,EECS Department, November 15, 2004)
译者:我爱自然语言处理(www.52nlp.cn ,2009年1月18日)
三、 语言模型的评估
a) 评估一个语言模型(Evaluating a Language Model)
i. 我们有n个测试单词串(We have n test string):
S_{1},S_{2},…,S_{n}
ii. 考虑在我们模型之下这段单词串的概率(Consider the probability under our model):
prod{i=1}{n}{P(S_{i})}
或对数概率(or log probability):
log{prod{i=1}{n}{P(S_{i})}}=sum{i=1}{n}{logP(S_{i})}
iii. 困惑度(Perplexity):
Perplexity = 2^{-x}
这里x = {1/W}sum{i=1}{n}{logP(S_{i})}
W是测试数据里总的单词数(W is the total number of words in the test data.)
iv. 困惑度是一种有效的“分支因子”评测方法(Perplexity is a measure of effective “branching factor”)
1. 我们有一个规模为N的词汇集v,模型预测(We have a vocabulary v of size N, and model predicts):
P(w) = 1/N 对于v中所有的单词(for all the words in v.)
v. 困惑度是什么(What about Perplexity)?
Perplexity = 2^{-x}
这里 x = log{1/N}
于是 Perplexity = N
vi. 人类行为的评估(estimate of human performance (Shannon, 1951)
1. 香农游戏(Shannon game)— 人们在一段文本中猜测下一个字母(humans guess next letter in text)
2. PP=142(1.3 bits/letter), uncased, open vocabulary
vii. 三元语言模型的评估(estimate of trigram language model (Brown et al. 1992))
PP=790(1.75 bits/letter), cased, open vocabulary
附:课程及课件pdf下载MIT英文网页地址:
http://people.csail.mit.edu/regina/6881/