• Radar Installation POJ


    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

    We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.

    Figure A Sample Input of Radar Installations


    Input
    The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

    The input is terminated by a line containing pair of zeros
    Output
    For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
    Sample Input
    3 2
    1 2
    -3 1
    2 1
    
    1 2
    0 2
    
    0 0
    
    Sample Output
    Case 1: 2
    Case 2: 1
    

    题解:
      直接考虑这个题目可能无从下手。
      我们把模型抽象出来,就是从选取若干从以x轴为圆心,d为半径的圆,覆盖所有的所给的点,求最小的圆数。
      这个模型无法下手,考虑转化模型,因为只能在x轴上,所以考虑对于每个点,求出,在x轴上所对应的可以覆盖这个点的区间段,那么问题就变成了对于每个区间,求最小点数可以覆盖所有的区间。经典贪心问题,剩下的就没什么了。
    代码:
    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    #define MAXN 10000
    using namespace std;
    struct qvjian{
        double l,r;
    }a[MAXN];
    int n;double d;
    
    bool cmp(qvjian x,qvjian y){
        return x.r<y.r;
    }
    
    int main()
    {
        int Case=0,flag=0;
        while(1){
            //memset(a,0,sizeof(a));
            cin>>n>>d;flag=0;
            if(!n&&!d) break;
            if(d<0) flag=1;
            for(int i=1;i<=n;i++){
                double x,y;
                scanf("%lf%lf",&x,&y);
                if(d*d-y*y<0){
                    flag=1;
                }
                double l=x-sqrt(d*d-y*y),r=x+sqrt(d*d-y*y);
                a[i].l=l,a[i].r=r;
            }
            if(flag){
                printf("Case %d: -1
    ",++Case);
                continue;
            }
            sort(a+1,a+n+1,cmp);
            int ans=0;double now=-(1<<30);
            for(int i=1;i<=n;i++){
                if(now<a[i].l){
                    now=a[i].r;
                ans++;
                }
            }
            printf("Case %d: %d
    ",++Case,ans);
        }
        return 0;
    }
  • 相关阅读:
    三种解决IE版本兼容性问题
    CSS 如何让超链接访问后和访问前的颜色不同且访问后仍保留hover和active效果
    bootstrap 笔记用法
    STL优缺点
    输出最大回文数
    将一组单词逆序输出
    排序算法
    背包问题
    二进制
    sstream
  • 原文地址:https://www.cnblogs.com/renjianshige/p/7498524.html
Copyright © 2020-2023  润新知