Java程序设计语言提供了两种机制,可以用来定义允许多个实现的类型:接口和抽象类。这两种机制之间最明显的区别在于:
1、抽象类允许包含某些方法的实现,但是接口不允许
2、为了实现由抽象类定义的类型,类必须为抽象类的一个子类
任何一个类,只要它定义了所有必要的方法,并且遵守通用约定,它就被允许实现一个接口,而不管这个类是处于类层次(class hierarchy)的哪个位置。因为Java是单继承的,所以抽象类作为类型定义受到了极大的限制。
现有的类可以很容易被更新,以实现新的接口。如果这些方法尚不存在,你所需要做的就是增加必要的方法,然后在类的声明中增加一个implements子句。
接口是定义mixin(混合类型)的理想选择。不严格的讲,mixin是指这样的类型:类除了实现它的“基本类型(primary type)”之外,还可以实现这个mixin类型,以表达它提供了某些可供选择的行为。例如,Comparable是一个mixin接口,它允许类表明它的实例可以与其它的可相互比较的对象进行排序。这样的接口之所以被称为mixin,是因为它允许任选的功能可被混合到类型的主要功能中。抽象类不能被用于定义为mixin,同样也是因为它们不可能被更新到现有的类中:类不可能有一个以上的父类,类层次结构中也没有适当的地方来插入mixin。
接口允许我们构造非层次结构的类型框架。类型层次对于组织某些事物是非常合适的,但是其他有些事物并不能被整齐的组织成一个严格的层次结构。例如,假设我们有一个接口代表一个singer(歌唱家),另一个接口代表一个songwriter(作曲家):
1 public interface Singer { 2 AudioClip singer(Song s); 3 } 4 public interface Songwriter { 5 Song compose(boolean hit); 6 }
在现实生活中,有些歌唱家本身也是作曲家。因为我们使用了接口而不是抽象类来定义这些类型,所以对单个类而言,它同时实现Singer和Songwriter是完全允许的。实际上,我们可以定义第三个接口,它同时扩展了Singer和Songwriter,并添加了一些适合于这种组合的新方法:
1 public interface SingerSongwriter extends Singer, Songwrite { 2 AudioClip strum(); 3 void actSensitive(); 4 }
你并不总是需要这种灵活性,但是一旦你这样做了,接口能帮你解决大问题。另外一种做法是编写一个臃肿(bloated)的类层次,对于每一种要被支持的属性组合,都包含一个单独的类。如果在整个类型系统中有n个属性,那么就必须支持2^n种可能的组合。这种现象被称为“组合爆炸(combinatorial explosion)”。类层次臃肿会导致类也臃肿,这种类包含许多方法,并且这些方法只是在参数的类型上有所不同而已,因为类层次中没有任何类型体现了公共的行为特征。
通过第16条中介绍的包装类(wrapper class)模式,接口使得安全的增强类的功能称为可能。如果使用抽象类来定义类型,那么程序员除了使用继承的手段来增加安全性,没有其它的选择。这样得到的类与包装类相比,功能更差,也更加脆弱。
虽然接口不允许包含方法的实现,但是,使用 接口来定义类型并不妨碍你为程序员提供实现上的帮助。通过对你导出的每个重要接口都提供一个抽象的骨架实现(skeletal implementation)类,把接口和抽象类的优点结合起来。接口的作用仍是定义类型,但是骨架实现类接管了所有与接口实现相关的工作。
按照惯例,骨架实现被称为AbstractInterface是指所实现的接口的名字。例如,Colletions Framework为每个重要的集合接口都提供了一个骨架实现,包括AbstractCollection、AbstractSet、AbstractList和AbstractMap。将它们称作SkeletalCollection、SkeletalSet、SkeletalList和SkeletalMap也是有道理的,但是现在Abstract的用法已经根深蒂固。
如果设计得当,骨架实现可以使程序员很容易地提供他们自己的接口实现。例如,下面是一个静态工厂方法,它包含一个完整的、功能齐全的List实现:
1 static List<Integer> intArrayList(final int[] a){ 2 if (a == null) 3 throw new NullPointerException(); 4 5 return new AbstractList<Integer>() { 6 @Override 7 public Integer get(int index) { 8 return a[index]; 9 } 10 11 @Override 12 public Integer set(int index, Integer element) { 13 int oldElement = a[index]; 14 a[index] = element; 15 return oldElement; 16 } 17 18 @Override 19 public int size() { 20 return a.length; 21 } 22 }; 23 }
当你考虑一个List实现应该为你完成哪些工作的时候,可以看出,这个例子充分演示了骨架实现的强大功能。顺便提一下,这个例子是个Adapter,它允许将int数组看做Integer实例的列表。由于在int值和Integer实例之间来回转换需要开销,它的性能不会很好。注意,这个例子中只提供一个静态工厂,并且这个类还是不可被访问的匿名类(anonymous class),它被隐藏在静态工厂的内部。
骨架实现的美妙之处在于,它们为抽象类提供了实现上的帮助,但又不强加“抽象类被用作类型定义时”所特有的严格限制。对于接口的大多数实现来讲,扩展骨架实现类是很显然的选择,但并不是必须的。如果预置的类无法扩展骨架实现类,这个类始终可以手工实现这个接口。此外,骨架实现类仍然能够有助于接口的实现。实现了这个接口的类可以把对于接口方法的调用,转发到一个内部私有类的实例上,这个内部私有类扩展了骨架实现类。这种方法被称为模拟多重继承(simulated multiple inheritance),他与第16条中讨论的包装类模式密切相关。这项技术具有多重继承的绝大多数有点,同时又避免了相应的缺陷。
编写骨架实现类相对比较简单,只是有点单调乏味。首先,必须认真研究接口,并确定哪些方法是最为基本的(primitive),其它的方法则可以根据他们来实现。这些基本方法将成为骨架实现类中的抽象方法。然后,必须为接口中所有的其它方法提供具体的实现。例如,下面是Map.Entry接口的骨架实现类:
1 public abstract class AbstractMapEntry<K,V> implements Map.Entry<K, V>{ 2 //基本的方法 3 public abstract K getKey(); 4 public abstract V getValue(); 5 //必须重写的方法 6 public V setValue(V value) { 7 throw new UnsupportedOperationException(); 8 } 9 @Override 10 public boolean equals(Object obj) { 11 if(obj == this) 12 return true; 13 if(! (obj instanceof Map.Entry)) 14 return false; 15 Map.Entry<?, ?> arg = (Map.Entry) obj; 16 return equals(getKey(), arg.getKey()) && 17 equals(getValue(), arg.getValue()); 18 } 19 private static boolean equals(Object o1, Object o2) { 20 return o1 == null ? o2 == null : o1.equals(o2); 21 } 22 23 @Override 24 public int hashCode() { 25 return hashCode(getKey()) ^ hashCode(getValue()); 26 } 27 private static int hashCode(Object obj) { 28 return obj == null ? 0 : obj.hashCode(); 29 } 30 }
骨架实现上有个小小的不同,就是简单实现(simple implementation)、AbstractMap.SimpleEntry就是个例子。简单实现就像个骨架实现,这是因为它实现了接口,并且是为了继承而设计的,但是区别在于它不是抽象的:它是最简单的可能的有效实现。你可以原封不动的使用,也可以看情况将它子类化
使用抽象类来定义允许多个实现的类型,与使用接口相比有一个明显的优势:抽象类的演变比接口的演变要容易的多。如果在后续的发行版本中,你希望在抽象类中增加新的方法,始终可以增加具体方法,它包含合理的默认实现。然后,该抽象类的所有现有实现都将提供这个新的方法。对于接口,这样做是行不通的
一般来说,要想在公有接口中增加方法,而不破坏实现这个接口的所有现有的类,这个是不可能的。之前实现该接口的类将会漏掉新增的方法,并且无法通过编译。在为接口增加新方法的同时,也为骨架实现类增加同样的新方法,这样可以在一定程度上减小由此带来的破坏,但是,这样做并没有真正解决问题。所有不从骨架实现类继承的接口仍然会遭到破坏
因此,设计公有的接口要非常的谨慎。接口一旦被公开发行,并且已经被广泛实现,在想改变这个接口几乎是不可能的。
简而言之,接口通常是定义允许多个实现的类型的最佳途径。这条规则有个例外,即当演变的容易性比灵活性和功能更为重要的时候。在这种情况下,应该使用抽象类来定义类型,但是前提是必须理解并且可以接受这些局限性。如果你导出了一个重要的接口,就应该坚决考虑同时提供骨架实现类。最后,应该尽可能谨慎的设计所有的公有接口,并通过编写多个实现来对它们进行全面测试。