• BZOJ1738 [Usaco2005 mar]Ombrophobic Bovines 发抖的牛


    先预处理出来每个点对之间的最短距离

    然后二分答案,网络流判断是否可行就好了恩

      1 /**************************************************************
      2     Problem: 1738
      3     User: rausen
      4     Language: C++
      5     Result: Accepted
      6     Time:404 ms
      7     Memory:9788 kb
      8 ****************************************************************/
      9  
     10 #include <cstdio>
     11 #include <cstring>
     12 #include <algorithm>
     13  
     14 using namespace std;
     15 typedef long long ll;
     16 const int N = 405;
     17 const int M = N * N << 2;
     18 const int inf_int = 1e9;
     19 const ll inf_ll = (ll) 1e18;
     20  
     21 inline int read();
     22  
     23 struct edge {
     24     int next, to, f;
     25     edge(int _n = 0, int _t = 0, int _f = 0) : next(_n), to(_t), f(_f) {}
     26 } e[M];
     27  
     28 int n, m, S, T;
     29 int a[N], b[N], sum;
     30 ll mp[N][N];
     31 int first[N], tot;
     32 int d[N];
     33  
     34 inline void Add_Edges(int x, int y, int z) {
     35     e[++tot] = edge(first[x], y, z), first[x] = tot;
     36     e[++tot] = edge(first[y], x), first[y] = tot;
     37 }
     38 #define y e[x].to
     39 #define p q[l]
     40 bool bfs() {
     41     static int l, r, x, q[N];
     42     memset(d, -1, sizeof(d));
     43     d[q[1] = S] = 1;
     44     for (l = r = 1; l != r + 1; ++l)
     45         for (x = first[p]; x; x = e[x].next)
     46             if (!~d[y] && e[x].f) {
     47                 d[q[++r] = y] = d[p] + 1;
     48                 if (y == T) return 1;
     49             }
     50     return 0;
     51 }
     52 #undef p
     53  
     54 int dfs(int p, int lim) {
     55   if (p == T || !lim) return lim;
     56   int x, tmp, rest = lim;
     57   for (x = first[p]; x && rest; x = e[x].next) 
     58     if (d[y] == d[p] + 1 && ((tmp = min(e[x].f, rest)) > 0)) {
     59       rest -= (tmp = dfs(y, tmp));
     60       e[x].f -= tmp, e[x ^ 1].f += tmp;
     61       if (!rest) return lim;
     62     }
     63   if (rest) d[p] = -1;
     64   return lim - rest;
     65 }
     66 #undef y
     67  
     68 int Dinic() {
     69   int res = 0;
     70   while (bfs())
     71     res += dfs(S, inf_int);
     72   return res;
     73 }
     74  
     75 inline bool check(ll t) {
     76     static int i, j;
     77     memset(first, 0, sizeof(first)), tot = 1;
     78     for (i = 1; i <= n; ++i)
     79         Add_Edges(S, i * 2 - 1, a[i]), Add_Edges(i * 2, T, b[i]);
     80     for (i = 1 ; i <= n; ++i)
     81         for (j = 1; j <= n; ++j)
     82             if (mp[i][j] <= t) Add_Edges(i * 2 - 1, j * 2, inf_int); 
     83     return Dinic() == sum;
     84 }
     85  
     86 int main() {
     87     int i, j, k, x, y, z;
     88     ll l, r, mid;
     89     n = read(), m = read(), S = n * 2 + 1, T = S + 1;
     90     for (i = 1; i <= n; ++i)
     91         sum += (a[i] = read()), b[i] = read();
     92     for (i = 1; i <= n; ++i)
     93         for (j = 1; j <= n; ++j) mp[i][j] = i == j ? 0 : inf_ll;
     94     for (i = 1; i <= m; ++i) {
     95         x = read(), y = read(), z = read();
     96         if (mp[x][y] > z) mp[x][y] = mp[y][x] = z;
     97     }
     98     for (k = 1; k <= n; ++k)
     99         for (i = 1; i <= n; ++i)
    100             for (j = 1; j <= n; ++j)
    101                 mp[i][j] = min(mp[i][j], mp[i][k] + mp[k][j]);
    102  
    103     l = 0, r = inf_ll;
    104     while (l + 1 < r) {
    105         mid = l + r >> 1;
    106         if (check(mid)) r = mid;
    107         else l = mid;
    108     }
    109     printf("%lld
    ", r == inf_ll ? -1ll : r);
    110     return 0;
    111 }
    112  
    113 inline int read() {
    114     static int x;
    115     static char ch;
    116     x = 0, ch = getchar();
    117     while (ch < '0' || '9' < ch)
    118         ch = getchar();
    119     while ('0' <= ch && ch <= '9') {
    120         x = x * 10 + ch - '0';
    121         ch = getchar();
    122     }
    123     return x;
    124 }
    View Code
    By Xs酱~ 转载请说明 博客地址:http://www.cnblogs.com/rausen
  • 相关阅读:
    NET下RabbitMQ实践[WCF发布篇]
    基于Mongodb分布式存储物理文件
    NET下RabbitMQ实践[实战篇]
    关于Memcache mutex设计模式的.net实现
    使用ServiceStackRedis链接Redis简介
    NET下RabbitMQ实践[示例篇]
    基于MongoDB分布式存储进行MapReduce并行查询
    Asp.Net开发小技巧汇总
    愈敏洪讲座
    图标下载利器
  • 原文地址:https://www.cnblogs.com/rausen/p/4470060.html
Copyright © 2020-2023  润新知