• BZOJ3052 [wc2013]糖果公园


    这两天我都在干嘛= =。。。浪死了

    啊啊啊终于调出来了这道2b题。。。

    莫队~莫队~但是注意要直接树分块!

    按L排序,分块R和Change即可

    具体方法还有复杂度什么的详见vfk的blog好了

      1 /**************************************************************
      2     Problem: 3052
      3     User: rausen
      4     Language: C++
      5     Result: Accepted
      6     Time:69886 ms
      7     Memory:29368 kb
      8 ****************************************************************/
      9  
     10 #include <cstdio>
     11 #include <cmath>
     12 #include <algorithm>
     13  
     14 using namespace std;
     15 typedef long long ll;
     16 typedef double lf;
     17 const int N = 100005;
     18 const int Maxlen = N * 60;
     19  
     20 ll now, ans[N];
     21 int n, m, Qu;
     22 int cnt_block, sz_block;
     23 ll v[N], w[N], pre[N];
     24 int cnt_c[N];
     25 int q[N], top_q;
     26  
     27 char buf[Maxlen], *c = buf;
     28 int Len;
     29  
     30 struct tree_node {
     31     int sz, dep, dfn, w;
     32     int fa[17];
     33     ll c;
     34     bool vis;
     35 } tr[N];
     36  
     37 int cnt_tree;
     38  
     39 struct edge {
     40     int next, to;
     41     edge() {}
     42     edge(int _n, int _t) : next(_n), to(_t) {}
     43 } e[N << 1];
     44  
     45 int first[N], cnt_edge;
     46  
     47 struct oper_query {
     48     int x, y, id, t;
     49     oper_query() {}
     50     oper_query(int _x, int _y, int _i, int _t) : x(_x), y(_y), id(_i), t(_t) {}
     51      
     52     inline bool operator < (const oper_query &X) const {
     53         return tr[x].w != tr[X.x].w ? tr[x].w < tr[X.x].w :
     54             tr[y].w != tr[X.y].w ? tr[y].w < tr[X.y].w : t < X.t;
     55     }
     56 } oq[N];
     57  
     58 int cnt_query;
     59  
     60 struct oper_change {
     61     int x, y, pre;
     62     oper_change() {}
     63     oper_change(int _x, int _y, int _p) : x(_x), y(_y), pre(_p) {}
     64 } oc[N];
     65  
     66 int cnt_change;
     67  
     68 inline int read() {
     69     int x = 0;
     70     while (*c < '0' || '9' < *c) ++c;
     71     while ('0' <= *c && *c <= '9')
     72         x = x * 10 + *c - '0', ++c;
     73     return x;
     74 }
     75  
     76 inline void Add_Edges(int x, int y) {
     77     e[++cnt_edge] = edge(first[x], y), first[x] = cnt_edge;
     78     e[++cnt_edge] = edge(first[y], x), first[y] = cnt_edge;
     79 }
     80  
     81 void dfs(int p) {
     82     int i, x, y;
     83     tr[p].dfn = ++cnt_tree;
     84     for (i = 1; i <= 16; ++i)
     85         tr[p].fa[i] = tr[tr[p].fa[i - 1]].fa[i - 1];
     86     for (x = first[p]; x; x = e[x].next)
     87         if ((y = e[x].to) != tr[p].fa[0]) {
     88             tr[y].dep = tr[p].dep + 1, tr[y].fa[0] = p;
     89             dfs(y);
     90             tr[p].sz += tr[y].sz;
     91             if (tr[p].sz >= sz_block) {
     92                 for (i = 1, ++cnt_block; i <= tr[p].sz; ++i)
     93                     tr[q[top_q--]].w = cnt_block;
     94                 tr[p].sz = 0;
     95             }
     96         }
     97     q[++top_q] = p;
     98     ++tr[p].sz;
     99 }
    100  
    101 inline int lca(int x, int y) {
    102     int i;
    103     if (tr[x].dep < tr[y].dep) swap(x, y);
    104     for (i = 16; ~i; --i)
    105         if (tr[tr[x].fa[i]].dep >= tr[y].dep)
    106             x = tr[x].fa[i];
    107     if (x == y) return x;
    108     for (i = 16; ~i; --i)
    109         if (tr[x].fa[i] != tr[y].fa[i])
    110             x = tr[x].fa[i], y = tr[y].fa[i];
    111     return tr[x].fa[0];
    112 }
    113  
    114  
    115 inline void reverse(int p) {
    116     if (tr[p].vis)
    117         now -= w[cnt_c[tr[p].c]--] * v[tr[p].c];
    118     else
    119         now += w[++cnt_c[tr[p].c]] * v[tr[p].c];
    120     tr[p].vis ^= 1;
    121 }
    122  
    123 inline void update(int p, int C) {
    124     if (tr[p].vis) {
    125         reverse(p);
    126         tr[p].c = C;
    127         reverse(p);
    128     } else tr[p].c = C;
    129 }
    130  
    131 inline void solve(int x, int y) {
    132     while (x != y) {
    133         if (tr[x].dep > tr[y].dep)
    134             reverse(x), x = tr[x].fa[0];
    135         else reverse(y), y = tr[y].fa[0];
    136     }
    137 }
    138  
    139 int main() {
    140     int i, j, LCA, oper, x, y, tot_Q;
    141     Len = fread(c, 1, Maxlen, stdin);
    142     buf[Len] = '';
    143     n = read(), m = read(), tot_Q = read();
    144     sz_block = (int) pow(n, (lf) 2.0 / 3) / 2;
    145     for (i = 1; i <= m; ++i)
    146         v[i] = read();
    147     for (i = 1; i <= n; ++i)
    148         w[i] = read();
    149     for (i = 1; i < n; ++i)
    150         Add_Edges(read(), read());
    151     for (i = 1; i <= n; ++i)
    152         pre[i] = tr[i].c = read();
    153      
    154     tr[1].dep = 1;
    155     dfs(1);
    156     while (top_q)
    157         tr[q[top_q--]].w = cnt_block;
    158      
    159     for (i = 1; i <= tot_Q; ++i) {
    160         oper = read(), x = read(), y = read();
    161         if (!oper)
    162             oc[++cnt_change] = oper_change(x, y, pre[x]), pre[x] = y;
    163         else {
    164             if (tr[x].dfn > tr[y].dfn) swap(x, y);
    165             oq[++cnt_query] = oper_query(x, y, cnt_query, cnt_change);
    166         }
    167     }
    168      
    169     sort(oq + 1, oq + cnt_query + 1);
    170     for (i = 1,     oq[0].t = 0; i <= cnt_query; ++i) {
    171         for (j = oq[i - 1].t + 1; j <= oq[i].t; ++j)
    172             update(oc[j].x, oc[j].y);
    173         for (j = oq[i - 1].t; j > oq[i].t; --j)
    174             update(oc[j].x, oc[j].pre);
    175         if (i == 1) solve(oq[i].x, oq[i].y);
    176         else solve(oq[i - 1].x, oq[i].x), solve(oq[i - 1].y, oq[i].y);
    177         LCA = lca(oq[i].x, oq[i].y);
    178         reverse(LCA), ans[oq[i].id] = now, reverse(LCA);
    179     }
    180     for (i = 1; i <= cnt_query; ++i)
    181         printf("%lld
    ", ans[i]);
    182     return 0;
    183 }
    View Code
    By Xs酱~ 转载请说明 博客地址:http://www.cnblogs.com/rausen
  • 相关阅读:
    开发新技术展望系列课程(视频课程讲师:徐晓卓)
    VSTS风暴系列课程(视频课程讲师:王京京/王兴明/王然)
    Mysql索引的数据结构及索引优化
    CAP原则,分布式场景下为何只能取其二
    为什么使用Redission解决高并发场景分布式锁问题
    Java面试题(6)Redis
    外企英语面试常见问题及核心话术
    Nacos&Eureka&Zookeeper
    j2ee中DAO设计模式
    第一个随笔
  • 原文地址:https://www.cnblogs.com/rausen/p/4194359.html
Copyright © 2020-2023  润新知