终于做出来了2333~~~~
凸包+旋转卡(qia)壳。
n = 2000,所以可以先枚举两个点作为对角线上的点。
然后由于决策单调性,另外的两个点可以o(1)求出,所以就做好了额。
计算几何太烦太烦>.<
1 /************************************************************** 2 Problem: 1069 3 User: rausen 4 Language: C++ 5 Result: Accepted 6 Time:148 ms 7 Memory:872 kb 8 ****************************************************************/ 9 10 #include <cstdio> 11 #include <algorithm> 12 13 #define points P 14 using namespace std; 15 typedef double lf; 16 const int N = 2005; 17 struct points{ 18 lf x, y; 19 }p[N], s[N]; 20 int n, top; 21 22 23 inline lf operator * (const P a, const P b){ 24 return a.x * b.y - a.y * b.x; 25 } 26 27 inline P operator - (const P a, const P b){ 28 P tmp; 29 tmp.x = a.x - b.x, tmp.y = a.y - b.y; 30 return tmp; 31 } 32 33 inline lf Sqr(const lf x){ 34 return x * x; 35 } 36 37 inline lf dis(const P a, const P b){ 38 return Sqr(a.x - b.x) + Sqr(a.y - b.y); 39 } 40 41 inline bool operator < (const P a, const P b){ 42 lf tmp = (a - p[1]) * (b - p[1]); 43 return tmp == 0 ? dis(p[1], a) < dis(p[1], b) : tmp > 0; 44 } 45 46 inline lf Area(const int x, const int y, const int z){ 47 return (s[z] - s[x]) * (s[y] - s[x]); 48 } 49 50 int work(){ 51 int k = 1; 52 for (int i = 2; i <= n; ++i) 53 if (p[i].y == p[k].y ? p[i].x < p[k].x : p[i].y < p[k].y) k = i; 54 swap(p[1], p[k]); 55 sort(p + 2, p + n + 1); 56 top = 2, s[1] = p[1], s[2] = p[2]; 57 for (int i = 3; i <= n; ++i){ 58 while ((s[top] - s[top - 1]) * (p[i] - s[top]) <= 0) --top; 59 s[++top] = p[i]; 60 } 61 } 62 63 double Calc(){ 64 s[top + 1] = p[1]; 65 lf res = 0; 66 int a, b, x, y; 67 for (x = 1; x <= top; ++x){ 68 a = x % top + 1, b = (x + 2) % top + 1; 69 for (y = x + 2; y <= top; ++y){ 70 while (a % top + 1 != y && Area(x, y, a + 1) > Area(x, y, a)) 71 a = a % top + 1; 72 while (b % top + 1 != x && Area(x, b + 1, y) > Area(x, b, y)) 73 b = b % top + 1; 74 res = max(Area(x, y, a) + Area(x, b, y), res); 75 } 76 } 77 return res; 78 } 79 80 int main(){ 81 scanf("%d ", &n); 82 for (int i = 1; i <= n; ++i) 83 scanf("%lf%lf", &p[i].x, &p[i].y); 84 work(); 85 printf("%.3lf ", Calc() / 2); 86 return 0; 87 }