• 2018快手实习笔试题


    // 第二题O(n)空间
    #if 0
    
    typedef long long ll;
    
    
    int main()
    {
        ll n;
    
        while (cin >> n)
        {
            if (n < 5)
            {
                cout << 1 << endl;
                continue;
            }
            vector<ll> dp(n + 1);
            dp[0] = dp[1] = dp[2] = dp[3] = dp[4] = 1;
    
    
            for (ll i = 5; i <= n; i++)
            {
                dp[i] = 2018 * dp[i - 1] % 1000000003 + 2017 * dp[i - 2] % 1000000003 + 2016 * dp[i - 3] % 1000000003 + 2015 * dp[i - 4] % 1000000003 + 2014 * dp[i - 5] % 1000000003;
            }
    
            cout << dp[n] % 1000000003 << endl;
        }
    
        return 0;
    }
    
    #endif
    
    // 第二题 时间复杂度超时
    #if 0
    
    typedef long long ll;
    
    inline ll ksc(ll x, ll y, ll mod)
    {
        return (x*y - (ll)((long double)x / mod*y)*mod + mod) % mod;
    }
    
    
    int main()
    {
        ll n;
    
        while (scanf("%lld",&n)!=EOF)
            //while (cin >> n)
        {
            if (n < 5)
            {
                //cout << 1 << endl;
                printf("1
    ");
                continue;
            }
            vector<ll> dp(6);
            dp[0] = dp[1] = dp[2] = dp[3] = dp[4] = 1;
    
            // 使用6个空间,然后每次都需要移位
            for (ll i = 5; i <= n; i++)
            {
                dp[5] = 2018 * (dp[4] % 1000000003) + 2017 * (dp[3] % 1000000003) + 2016 * (dp[2] % 1000000003) + 2015 * (dp[1] % 1000000003) + 2014 * (dp[0] % 1000000003);
                for (int j = 0; j < 5; j++)
                {
                    dp[j] = dp[j + 1];
                }
            }
            printf("%lld
    ", dp[5] % 1000000003);
    
            // 不用移位
            //for (ll i = 5; i <= n; i++)
            //{
            //    dp[i % 6] = ksc(2018, dp[(i - 1) % 6], 1000000003) + ksc(2017, dp[(i - 2) % 6], 1000000003) + ksc(2016, dp[(i - 3) % 6], 1000000003) + ksc(2015, dp[(i - 4) % 6], 1000000003) + ksc(2014, dp[(i - 5) % 6], 1000000003);
            //    //dp[i % 6] = 2018 * (dp[(i - 1) % 6] % 1000000003) + 2017 * (dp[(i - 2) % 6] % 1000000003) + 2016 * (dp[(i - 3) % 6] % 1000000003) + 2015 * (dp[(i - 4) % 6] % 1000000003) + 2014 * (dp[(i - 5) % 6] % 1000000003);
            //}
            ////cout << dp[n%6] % 1000000003 << endl;
            //printf("%lld
    ", dp[n % 6] % 1000000003);
        }
    
        return 0;
    }
    
    #endif
    
    // 第二题 时间复杂度超时
    #if 0
    
    typedef long long ll;
    
    long long quick_multiply(long long a, long long b, long long mod) {
        long long result = 0;
        while (b) {
            result = (result + (b % 2 * a) % mod) % mod;
            a = a * 2 % mod;
            b = b / 2;
        }
        return result;
    }
    
    inline ll ksc(ll x, ll y, ll mod)
    {
        return (x*y - (ll)((long double)x / mod*y)*mod + mod) % mod;
    }
    
    int main()
    {
        ll n;
    
        while (scanf("%lld", &n) != EOF)
            //while (cin >> n)
        {
            if (n < 5)
            {
                //cout << 1 << endl;
                printf("1
    ");
                continue;
            }
            vector<ll> dp(6);
            dp[0] = dp[1] = dp[2] = dp[3] = dp[4] = 1;
    
    
            for (ll i = 5; i <= n; i++)
            {
                dp[i % 6] = quick_multiply(2018, dp[(i - 1) % 6], 1000000003) + quick_multiply(2017, dp[(i - 2) % 6], 1000000003) + quick_multiply(2016, dp[(i - 3) % 6], 1000000003) + quick_multiply(2015, dp[(i - 4) % 6], 1000000003) + quick_multiply(2014, dp[(i - 5) % 6], 1000000003);
                //dp[i % 6] = 2018 * (dp[(i - 1) % 6] % 1000000003) + 2017 * (dp[(i - 2) % 6] % 1000000003) + 2016 * (dp[(i - 3) % 6] % 1000000003) + 2015 * (dp[(i - 4) % 6] % 1000000003) + 2014 * (dp[(i - 5) % 6] % 1000000003);
            }
    
            //cout << dp[n%6] % 1000000003 << endl;
            printf("%lld
    ", dp[n % 6] % 1000000003);
        }
    
        return 0;
    
    }
    
    #endif
    
    
    #if 0
    
    // 快速幂运算求解斐波拉契数列
    #include <cstdio>
    #include <iostream>
    
    using namespace std;
    
    const int MOD = 10000;
    
    struct matrix
    {
        int m[2][2];
    }ans, base;
    
    matrix multi(matrix a, matrix b)
    {
        matrix tmp;
        for(int i = 0; i < 2; ++i)
        {
            for(int j = 0; j < 2; ++j)
            {
                tmp.m[i][j] = 0;
                for(int k = 0; k < 2; ++k)
                    tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
            }
        }
        return tmp;
    }
    int fast_mod(int n)  // 求矩阵 base 的  n 次幂 
    {
        base.m[0][0] = base.m[0][1] = base.m[1][0] = 1;
        base.m[1][1] = 0;
        ans.m[0][0] = ans.m[1][1] = 1;  // ans 初始化为单位矩阵 
        ans.m[0][1] = ans.m[1][0] = 0;
        while (n)
        {
            if (n & 1)  //实现 ans *= t; 其中要先把 ans赋值给 tmp,然后用 ans = tmp * t 
            {
                ans = multi(ans, base);
            }
            base = multi(base, base);
            n >>= 1;
        }
        return ans.m[0][1];
    }
    
    int main()
    {
        int n;
        while (scanf("%d", &n) && n != -1)
        {
            printf("%d
    ", fast_mod(n));
        }
        return 0;
    }
    
    #endif
    
    //计算(x^y) % N; 注:(x^y)表示x的y次方
    #if 0
    
    int main()
    {
        int x, y, N;
    
        cin >> x >> y >> N;
    
        long res = 1;
        x = x % N; //开始
    
        while (y > 0) {
            if (y % 2 == 1) //等价于 if(y&1)
                res = (res * x) % N;
            y /= 2; //y>>1; 分解y为二进制编码
            x = (x * x) % N;
        }
    
        cout << res << endl;
    
        return 0;
    }
    
    #endif
    View Code

    // 第一题
    #if 0
    
    int main()
    {
        int N, M;
        cin >> N >> M;
    
        unordered_set<string> st;
    
        for (int i = 0; i < N;i++)
        {
            string temp;
            cin >> temp;
            st.insert(temp);
        }
    
        for (int i = 0; i < M;i++)
        {
            string temp;
            cin >> temp;
            if (st.find(temp)!=st.end()) //找到了
            {
                cout << "NO" << endl;
            }
            else
            {
                st.insert(temp);
                cout << "YES" << endl;
            }
        }
    
    
        return 0;
    }
    #endif
  • 相关阅读:
    GUI基础学习
    常用类string的用法
    类。对象和包--补上周
    类.对象和包
    调用函数的注意事项
    函数的简单运用
    一维数组基础
    java中scanner类的用法
    数据库——DQL(语句查询)
    数据库——JDBC
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/8998166.html
Copyright © 2020-2023  润新知