• 矩阵快速幂求斐波那契数列


    • 恕我愚昧,今天才知道斐波拉契还可以这样解
    • 源于上次快手的笔试题,本来以为很简单的斐波拉契结果总是时间超时
    • 矩阵快速幂 精髓:比如A^19  =>  (A^16)*(A^2)*(A^1),显然采取这样的方式计算时因子数将是log(n)级别的(原来的因子数是n),不仅这样,因子间也是存在某种联系的,比如A^4能通过(A^2)*(A^2)得到,A^8又能通过(A^4)*(A^4)得到,这点也充分利用了现有的结果作为有利条件。下面举个例子进行说明:现在要求A^156,而156(10)=10011100(2) 也就有A^156=>(A^4)*(A^8)*(A^16)*(A^128)  考虑到因子间的联系,我们从二进制10011100中的最右端开始计算到最左端。
    while(N)
     {
              if(N&1)
                     res=res*A;
              N>>=1;
              A=A*A;
     }

    例题:

    //计算(x^y) % N; 注:(x^y)表示x的y次方
    #if 0
    
    int main()
    {
        int x, y, N;
    
        cin >> x >> y >> N;
    
        long res = 1;
        x = x % N; //开始
    
        while (y > 0) {
            if (y % 2 == 1) //等价于 if(y&1)
                res = (res * x) % N;
            y /= 2; //y>>1; 分解y为二进制编码
            x = (x * x) % N;
        }
    
        cout << res << endl;
    
        return 0;
    }
    
    #endif

    对于矩阵乘法与递推式之间的关系:

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    如:在斐波那契数列之中

    f[i] = 1*f[i-1]+1*f[i-2]  f[i-1] = 1*f[i-1] + 0*f[i-2];

    所以:  

    Fibonacci
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 7241   Accepted: 5131

    Description

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input

    0
    9
    999999999
    1000000000
    -1

    Sample Output

    0
    34
    626
    6875

    Hint

    As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

    .

    Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

    .

    Source

    #if 1
    
    #include <cstdio>
    #include <iostream>
    
    using namespace std;
    
    const int MOD = 10000;
    
    struct matrix
    {
        int m[2][2];
    }ans, base;
    
    matrix multi(matrix a, matrix b)
    {
        matrix tmp;
        for(int i = 0; i < 2; ++i)
        {
            for(int j = 0; j < 2; ++j)
            {
                tmp.m[i][j] = 0;
                for(int k = 0; k < 2; ++k)
                    tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
            }
        }
        return tmp;
    }
    int fast_mod(int n)  // 求矩阵 base 的  n 次幂 
    {
        base.m[0][0] = base.m[0][1] = base.m[1][0] = 1;
        base.m[1][1] = 0;
        ans.m[0][0] = ans.m[1][1] = 1;  // ans 初始化为单位矩阵 
        ans.m[0][1] = ans.m[1][0] = 0;
        while (n)
        {
            if (n & 1)  //实现 ans *= t; 其中要先把 ans赋值给 tmp,然后用 ans = tmp * t 
            {
                ans = multi(ans, base);
            }
            base = multi(base, base);
            n >>= 1;
        }
        return ans.m[0][1];
    }
    
    int main()
    {
        int n;
        while (scanf("%d", &n) && n != -1)
        {
            printf("%d
    ", fast_mod(n));
        }
        return 0;
    }
    
    #endif
  • 相关阅读:
    css 定位
    css inline忽略宽和高
    css clear属性
    关系型数据库与nosql
    链接标签<a>的css定义规则
    1em=16px
    text-align的justify属性
    2393Cirno的完美算数教室 容斥
    bzoj4665小w的喜糖 dp+容斥
    bzoj4558[JLoi2016]方 容斥+count
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/8998112.html
Copyright © 2020-2023  润新知