4. Median of Two Sorted Arrays
题目
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
Example 1:
nums1 = [1, 3]
nums2 = [2]
The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4]
The median is (2 + 3)/2 = 2.5
解析
-
题目是这样的:给定两个已经排序好的数组(可能为空),找到两者所有元素中第k大的元素。另外一种更加具体的形式是,找到所有元素的中位数。本篇文章我们只讨论更加一般性的问题:如何找到两个数组中第k大的元素?不过,测试是用的两个数组的中位数的题目,Leetcode第4题 Median of Two Sorted Arrays
-
方案1:假设两个数组总共有n个元素,那么显然我们有用O(n)时间和O(n)空间的方法:用merge sort的思路排序,排序好的数组取出下标为k-1的元素就是我们需要的答案。
这个方法比较容易想到,但是有没有更好的方法呢? -
方案2:我们可以发现,现在我们是不需要“排序”这么复杂的操作的,因为我们仅仅需要第k大的元素。我们可以用一个计数器,记录当前已经找到第m大的元素了。同时我们使用两个指针pA和pB,分别指向A和B数组的第一个元素。使用类似于merge sort的原理,如果数组A当前元素小,那么pA++,同时m++。如果数组B当前元素小,那么pB++,同时m++。最终当m等于k的时候,就得到了我们的答案——O(k)时间,O(1)空间。
-
但是,当k很接近于n的时候,这个方法还是很费时间的。当然,我们可以判断一下,如果k比n/2大的话,我们可以从最大的元素开始找。但是如果我们要找所有元素的中位数呢?时间还是O(n/2)=O(n)的。有没有更好的方案呢?
求中位数,给了两个例子。总结来看就是总数是偶数还是奇数。
奇数:(m+n)/2求得中间数,它是第(m+n)/2+1个数。这个值在我们利用归并思想解题时使用。
偶数:(m+n)/2、(m+n)/2+1。这两个数也就是第(m+n)/2、(m+n)/2+1个数。
利用归并思想查找到第k个数,按照运算规则即可。
double findK(vector<int>&a,int lena,vector<int>&b,int lenb,int k)
{
int i=0,j=0;
for(;i<lena&&j<lenb;)
{
k--;
if(a[i]<b[j])
{
if(k==0)
return a[i];
i++;
}
else if(k==0)
return b[j];
else
j++;
}
return i>=lena?b[j+k-1]:a[i+k-1];
}
double findMedianSortedArrays(vector<int>&nums1, vector<int>&nums2) {
int m=nums1.size(),n=nums2.size();
return ((m+n)&1)?findK(nums1,m,nums2,n,(m+n+1)>>1):
((findK(nums1,m,nums2,n,(m+n)>>1)+findK(nums1,m,nums2,n,((m+n)>>1)+1))*0.5);
}
- 我们可以考虑从k入手。如果我们每次都能够剔除一个一定在第k大元素之前的元素,那么我们需要进行k次。但是如果每次我们都剔除一半呢?所以用这种类似于二分的思想
题目中需要求出的结果是中位数,中位数的特点是其以后的数都比它大,前面的数都比它小。又因为两个数组都已经是有序数组,因为我们所需要的结果就是数组a中的第i个元素和数组b中第j个元素,使得i+j-2等于两个数组长度和的一半,所以此题就可以转换成求i,j这两个值的问题了。在数组a中确定i以及在数组b中确定j,此时可以采用二分查找的方法,通过不断缩小查找范围来确实所需要查找的值,也符合题目中所要求的分治算法的思想。
class Solution {
public:
int getkth(int s[], int m, int l[], int n, int k){
//确保m < n
if (m > n)
return getkth(l, n, s, m, k);
if (m == 0)
return l[k - 1];
if (k == 1)
return min(s[0], l[0]);
//递归过程
int i = min(m, k / 2), j = min(n, k / 2);
if (s[i - 1] > l[j - 1])
return getkth(s, m, l + j, n - j, k - j);
else
return getkth(s + i, m - i, l, n, k - i);
return 0;
}
double findMedianSortedArrays(int A[], int m, int B[], int n) {
//总长度的一半
int l = (m + n + 1) / 2;
int r = (m + n + 2) / 2;
return (getkth(A, m ,B, n, l) + getkth(A, m, B, n, r)) / 2.0;
}
};