• 二分查找法的实现和应用汇总


        在学习算法的过程中,我们除了要了解某个算法的基本原理、实现方式,更重要的一个环节是利用big-O理论来分析算法的复杂度。在时间复杂度和空间复杂度之间,我们又会更注重时间复杂度。

    时间复杂度按优劣排差不多集中在:

    O(1), O(log n), O(n), O(n log n), O(n2), O(nk), O(2n)

    到目前位置,似乎我学到的算法中,时间复杂度是O(log n),好像就数二分查找法,其他的诸如排序算法都是 O(n log n)或者O(n2)。但是也正是因为有二分的 O(log n), 才让很多 O(n2)缩减到只要O(n log n)。

    关于二分查找法

    二分查找法主要是解决在“一堆数中找出指定的数”这类问题。

    而想要应用二分查找法,这“一堆数”必须有一下特征:

    • 存储在数组中
    • 有序排列

    所以如果是用链表存储的,就无法在其上应用二分查找法了。(曽在面试被问二分查找法可以什么数据结构上使用:数组?链表?)

    至于是顺序递增排列还是递减排列,数组中是否存在相同的元素都不要紧。不过一般情况,我们还是希望并假设数组是递增排列,数组中的元素互不相同。

    二分查找法的基本实现

    二分查找法在算法家族大类中属于“分治法”,分治法基本都可以用递归来实现的,二分查找法的递归实现如下:

    int bsearch(int array[], int low, int high, int target)
    {
    if (low > high) return -1;

    int mid = (low + high)/2;
    if (array[mid]> target)
    return binarysearch(array, low, mid -1, target);
    if (array[mid]< target)
    return binarysearch(array, mid+1, high, target);

    //if (midValue == target)
    return mid;
    }

         不过所有的递归都可以自行定义stack来解递归,所以二分查找法也可以不用递归实现,而且它的非递归实现甚至可以不用栈,因为二分的递归其实是尾递归,它不关心递归前的所有信息。

    int bsearchWithoutRecursion(int array[], int low, int high, int target)
    {
    while(low <= high)
    {
    int mid = (low + high)/2;
    if (array[mid] > target)
    high = mid - 1;
    else if (array[mid] < target)
    low = mid + 1;
    else //find the target
    return mid;
    }
    //the array does not contain the target
    return -1;
    }

    只用小于比较(<)实现二分查找法

         在前面的二分查找实现中,我们既用到了小于比较(<)也用到了大于比较(>),也可能还需要相等比较(==)。而实际上我们只需要一个小于比较(<)就可以。因为错逻辑上讲a>b和b<a应该是有相当的逻辑值;而a==b则是等价于 !((a<b)||(b<a)),也就是说a既不小于b,也不大于b。

         当然在程序的世界里, 这种关系逻辑其实并不是完全正确。另外,C++还允许对对象进行运算符的重载,因此开发人员完全可以随意设计和实现这些关系运算符的逻辑值。不过在整型数据面前,这些关系运算符之间的逻辑关系还是成立的,而且在开发过程中,我们还是会遵循这些逻辑等价关系来重载关系运算符。

    干嘛要搞得那么羞涩,只用一个关系运算符呢?因为这样可以为二分查找法写一个template,又能减少对目标对象的要求。模板会是这样的:

    template <typename T, typename V>
    inline int BSearch(T& array, int low, int high, V& target)
    {
    while(!(high < low))
    {
    int mid = (low + high)/2;
    if (target < array[mid])
    high = mid - 1;
    else if (array[mid] < target)
    low = mid + 1;
    else //find the target
    return mid;
    }
    //the array does not contain the target
    return -1;
    }

         我们只需要求target的类型V有重载小于运算符就可以。而对于V的集合类型T,则需要有[]运算符的重载。当然其内部实现必须是O(1)的复杂度,否则也就失去了二分查找的效率。

    用二分查找法找寻边界值

    之前的都是在数组中找到一个数要与目标相等,如果不存在则返回-1。我们也可以用二分查找法找寻边界值,也就是说在有序数组中找到“正好大于(小于)目标数”的那个数。

    用数学的表述方式就是:

         在集合中找到一个大于(小于)目标数t的数x,使得集合中的任意数要么大于(小于)等于x,要么小于(大于)等于t。

    举例来说:

    给予数组和目标数

    int array = {2, 3, 5, 7, 11, 13, 17};
    int target = 7;

    那么上界值应该是11,因为它“刚刚好”大于7;下届值则是5,因为它“刚刚好”小于7。

    用二分查找法找寻上届

    //Find the fisrt element, whose value is larger than target, in a sorted array 
    int BSearchUpperBound(int array[], int low, int high, int target)
    {
    //Array is empty or target is larger than any every element in array
    if(low > high || target >= array[high]) return -1;

    int mid = (low + high) / 2;
    while (high > low)
    {
    if (array[mid] > target)
    high = mid;
    else
    low = mid + 1;

    mid = (low + high) / 2;
    }

    return mid;
    }

    与精确查找不同之处在于,精确查找分成三类:大于小于等于(目标数)。而界限查找则分成了两类:大于不大于

    如果当前找到的数大于目标数时,它可能就是我们要找的数,所以需要保留这个索引,也因此if (array[mid] > target)时 high=mid; 而没有减1。

    用二分查找法找寻下届

    //Find the last element, whose value is less than target, in a sorted array 
    int BSearchLowerBound(int array[], int low, int high, int target)
    {
    //Array is empty or target is less than any every element in array
    if(high < low || target <= array[low]) return -1;

    int mid = (low + high + 1) / 2; //make mid lean to large side
    while (low < high)
    {
    if (array[mid] < target)
    low = mid;
    else
    high = mid - 1;

    mid = (low + high + 1) / 2;
    }

    return mid;
    }

    下届寻找基本与上届相同,需要注意的是在取中间索引时,使用了向上取整。若同之前一样使用向下取整,那么当low == high-1,而array[low] 又小于 target时就会形成死循环。因为low无法往上爬超过high。

    这两个实现都是找严格界限,也就是要大于或者小于。如果要找松散界限,也就是找到大于等于或者小于等于的值(即包含自身),只要对代码稍作修改就好了:

    去掉判断数组边界的等号:

    target >= array[high]改为 target > array[high]

    在与中间值的比较中加上等号:

    array[mid] > target改为array[mid] >= target

    用二分查找法找寻区域

    之前我们使用二分查找法时,都是基于数组中的元素各不相同。假如存在重复数据,而数组依然有序,那么我们还是可以用二分查找法判别目标数是否存在。不过,返回的index就只能是随机的重复数据中的某一个。

    此时,我们会希望知道有多少个目标数存在。或者说我们希望数组的区域。

    结合前面的界限查找,我们只要找到目标数的严格上届和严格下届,那么界限之间(不包括界限)的数据就是目标数的区域了。

    //return type: pair<int, int>
    //the fisrt value indicate the begining of range,
    //the second value indicate the end of range.
    //If target is not find, (-1,-1) will be returned
    pair<int, int> SearchRange(int A[], int n, int target)
    {
    pair<int, int> r(-1, -1);
    if (n <= 0) return r;

    int lower = BSearchLowerBound(A, 0, n-1, target);
    lower = lower + 1; //move to next element

    if(A[lower] == target)
    r.first = lower;
    else //target is not in the array
    return r;

    int upper = BSearchUpperBound(A, 0, n-1, target);
    upper = upper < 0? (n-1):(upper - 1); //move to previous element

    //since in previous search we had check whether the target is
    //in the array or not, we do not need to check it here again
    r.second = upper;

    return r;
    }

    它的时间复杂度是两次二分查找所用时间的和,也就是O(log n) + O(log n),最后还是O(log n)。

    在轮转后的有序数组上应用二分查找法

    之前我们说过二分法是要应用在有序的数组上,如果是无序的,那么比较和二分就没有意义了。

    不过还有一种特殊的数组上也同样可以应用,那就是“轮转后的有序数组(Rotated Sorted Array)”。它是有序数组,取期中某一个数为轴,将其之前的所有数都轮转到数组的末尾所得。比如{7, 11, 13, 17, 2, 3, 5}就是一个轮转后的有序数组。非严格意义上讲,有序数组也属于轮转后的有序数组——我们取首元素作为轴进行轮转。

    下边就是二分查找法在轮转后的有序数组上的实现(假设数组中不存在相同的元素)

    int SearchInRotatedSortedArray(int array[], int low, int high, int target) 
    {
    while(low <= high)
    {
    int mid = (low + high) / 2;
    if (target < array[mid])
    if (array[mid] < array[high])//the higher part is sorted
    high = mid - 1; //the target would only be in lower part
    else //the lower part is sorted
    if(target < array[low])//the target is less than all elements in low part
    low = mid + 1;
    else
    high = mid - 1;

    else if(array[mid] < target)
    if (array[low] < array[mid])// the lower part is sorted
    low = mid + 1; //the target would only be in higher part
    else //the higher part is sorted
    if (array[high] < target)//the target is larger than all elements in higher part
    high = mid - 1;
    else
    low = mid + 1;
    else //if(array[mid] == target)
    return mid;
    }

    return -1;
    }
    int search_ref(vector<int>& nums, int target) {
            int l = 0, r = nums.size() - 1;
            while (l <= r) {
                int mid = (l + r) / 2;
                if (target == nums[mid])
                    return mid;
                // there exists rotation; the middle element is in the left part of the array
                if (nums[mid] > nums[r]) {
                    if (target < nums[mid] && target >= nums[l])
                        r = mid - 1;
                    else
                        l = mid + 1;
                }
                // there exists rotation; the middle element is in the right part of the array
                else if (nums[mid] < nums[l]) {
                    if (target > nums[mid] && target <= nums[r])
                        l = mid + 1;
                    else
                        r = mid - 1;
                }
                // there is no rotation; just like normal binary search
                else {
                    if (target < nums[mid])
                        r = mid - 1;
                    else
                        l = mid + 1;
                }
            }
            return -1;
        }

    对比普通的二分查找法,为了确定目标数会落在二分后的那个部分,我们需要更多的判定条件。但是我们还是实现了O(log n)的目标。

    二分查找法的缺陷

    二分查找法的O(log n)让它成为十分高效的算法。不过它的缺陷却也是那么明显的。就在它的限定之上:

    有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组

    数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n)。因而导致构建有序数组变成低效的事情。

    解决这些缺陷问题更好的方法应该是使用二叉查找树了,最好自然是自平衡二叉查找树了,自能高效的(O(n log n))构建有序元素集合,又能如同二分查找法一样快速(O(log n))的搜寻目标数。

    #include <iostream>
    using namespace std;
    
    int binarysearch(int array[], int low, int high, int target)
    {
        if (low > high) return -1;
    
        int mid = (low + high) / 2;
        if (array[mid] > target)
            return    binarysearch(array, low, mid - 1, target);
        if (array[mid] < target)
            return    binarysearch(array, mid + 1, high, target);
    
        //if (midValue == target)
        return mid;
    }
    
    //Find the fisrt element, whose value is larger than target, in a sorted array 
    int BSearchUpperBound(int array[], int low, int high, int target)
    {
        //Array is empty or target is larger than any every element in array 
        if (low > high || target >= array[high]) return -1;
    
        int mid = (low + high) / 2;
        while (high > low)
        {
            if (array[mid] > target)
                high = mid;
            else
                low = mid + 1;
    
            mid = (low + high) / 2;
        }
    
        return mid;
    }
    
    //Find the fisrt element, whose value is larger than target, in a sorted array 
    int BSearchUpperBound_ext(int array[], int low, int high, int target)
    {
        //Array is empty or target is larger than any every element in array 
        if (low > high || target > array[high]) return -1;
    
        int mid = (low + high) / 2;
        while (high > low)
        {
            if (array[mid] >= target)
                high = mid;
            else
                low = mid + 1;
    
            mid = (low + high) / 2;
        }
    
        return mid;
    }
    
    //Find the last element, whose value is less than target, in a sorted array 
    int BSearchLowerBound(int array[], int low, int high, int target)
    {
        //Array is empty or target is less than any every element in array
        if (high < low || target <= array[low]) return -1;
    
        int mid = (low + high + 1) / 2; //make mid lean to large side
        while (low < high)
        {
            if (array[mid] < target)
                low = mid;
            else
                high = mid - 1;
    
            mid = (low + high + 1) / 2;
        }
    
        return mid;
    }
    
    //Find the last element, whose value is less than target, in a sorted array 
    int BSearchLowerBound_ext(int array[], int low, int high, int target)
    {
        //Array is empty or target is less than any every element in array
        if (high < low || target < array[low]) return -1;
    
        int mid = (low + high + 1) / 2; //make mid lean to large side
        while (low < high)
        {
            if (array[mid] <= target)
                low = mid;
            else
                high = mid - 1;
    
            mid = (low + high + 1) / 2;
        }
    
        return mid;
    }
    //return type: pair<int, int>
    //the fisrt value indicate the begining of range,
    //the second value indicate the end of range.
    //If target is not find, (-1,-1) will be returned
    pair<int, int> SearchRange(int A[], int n, int target)
    {
        pair<int, int> r(-1, -1);
        if (n <= 0) return r;
    
        int lower = BSearchLowerBound(A, 0, n - 1, target);
        lower = lower + 1; //move to next element
    
        if (A[lower] == target)
            r.first = lower;
        else //target is not in the array
            return r;
    
        int upper = BSearchUpperBound(A, 0, n - 1, target);
        upper = upper < 0 ? (n - 1) : (upper - 1); //move to previous element
    
        //since in previous search we had check whether the target is
        //in the array or not, we do not need to check it here again
        r.second = upper;
    
        return r;
    }
    
    int SearchInRotatedSortedArray(int array[], int low, int high, int target)
    {
        while (low <= high)
        {
            int mid = (low + high) / 2;
            if (target < array[mid])
            if (array[mid] < array[high])//the higher part is sorted
                high = mid - 1; //the target would only be in lower part
            else //the lower part is sorted
            if (target < array[low])//the target is less than all elements in low part
                low = mid + 1;
            else
                high = mid - 1;
    
            else if (array[mid] < target)
            if (array[low] < array[mid])// the lower part is sorted
                low = mid + 1; //the target would only be in higher part
            else //the higher part is sorted
            if (array[high] < target)//the target is larger than all elements in higher part
                high = mid - 1;
            else
                low = mid + 1;
            else //if(array[mid] == target)
                return mid;
        }
    
        return -1;
    }
    
    int main()
    {
        int A[] = { 5, 7, 7, 8, 8, 10 };
    
        int up=BSearchUpperBound(A,0,5, 8); //5
        int low = BSearchLowerBound(A, 0, 5, 8);//2
        auto range = SearchRange(A, 6, 8); //3,4
    
        int up1 = BSearchLowerBound(A, 0, 5, 5); //-1
        int low1 = BSearchUpperBound(A, 0, 5, 10); //-1
    
        // test 非严格上下界
        int up2 = BSearchLowerBound_ext(A, 0, 5, 8); //4
        int low2 = BSearchUpperBound_ext(A, 0, 5, 8);//3
    
        return 0;
    }

    reference:

    编程之美之二分查找总结

    二分查找法的实现和应用汇总

  • 相关阅读:
    FastCgi与PHP-fpm之间是个什么样的关系
    MySql的like语句中的通配符:百分号、下划线和escape
    mysql将int 时间类型格式化
    navicat 结合快捷键
    MySQL中concat函数
    case when then else end 用法
    PhpStorm主题
    Having与Where的区别
    无需图形界面环境下的浏览器
    Socket常见错误
  • 原文地址:https://www.cnblogs.com/ranjiewen/p/5234992.html
Copyright © 2020-2023  润新知