• cf #205 B Codeforces Round #205 (Div. 2) B. Two Heaps


    B. Two Heaps
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Valera has n cubes, each cube contains an integer from 10 to 99. He arbitrarily chooses n cubes and puts them in the first heap. The remaining cubes form the second heap.

    Valera decided to play with cubes. During the game he takes a cube from the first heap and writes down the number it has. Then he takes a cube from the second heap and write out its two digits near two digits he had written (to the right of them). In the end he obtained a single fourdigit integer — the first two digits of it is written on the cube from the first heap, and the second two digits of it is written on the second cube from the second heap.

    Valera knows arithmetic very well. So, he can easily count the number of distinct fourdigit numbers he can get in the game. The other question is: how to split cubes into two heaps so that this number (the number of distinct fourdigit integers Valera can get) will be as large as possible?

    Input

    The first line contains integer n (1 ≤ n ≤ 100). The second line contains n space-separated integers ai (10 ≤ ai ≤ 99), denoting the numbers on the cubes.

    Output

    In the first line print a single number — the maximum possible number of distinct four-digit numbers Valera can obtain. In the second line print n numbers bi (1 ≤ bi ≤ 2). The numbers mean: the i-th cube belongs to the bi-th heap in your division.

    If there are multiple optimal ways to split the cubes into the heaps, print any of them.

    Sample test(s)
    Input
    1
    10 99
    Output
    1
    2 1
    Input
    2
    13 24 13 45
    Output
    4
    1 2 2 1
    Note

    In the first test case Valera can put the first cube in the first heap, and second cube — in second heap. In this case he obtain number 1099. If he put the second cube in the first heap, and the first cube in the second heap, then he can obtain number 9910. In both cases the maximum number of distinct integers is equal to one.

    In the second test case Valera can obtain numbers 1313, 1345, 2413, 2445. Note, that if he put the first and the third cubes in the first heap, he can obtain only two numbers 1324 and 1345.

    按元素的出现次数处理按一下顺序处理:

    1.若某元素出现了至少2次,若偶数次,均分至heap 1、heap 2;否则,最后留1个该元素,第3步处理;   ==记录heap中不同元素数量

    2.若某元素出现了1次,优先分配到当前不同元素数量少的heap;                   ==更新heap中不同元素数量

    3.对于1.中剩余的元素,一个个往元素数量少的heap丢即可。

    最终可得最多的不同整数为 number of  different numbers in heap 1  multiply ... in heap 2.

    为什么这么做答案正确?  若a出现n次,暴力枚举分配方式:(1, n-1),(2, n-2)。。。最终发现(n=1, ..., 3)类似于均值不等式的式子。。。

    AC代码:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<vector>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<map>
    
    using namespace std;
    
    #define LL long long
    #define ULL unsigned long long
    #define UINT unsigned int
    #define MAX_INT 0x7fffffff
    #define cint const int
    #define MAX(X,Y) ((X) > (Y) ? (X) : (Y))
    #define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
    
    #define MAXN 222
    int togo[MAXN], a[MAXN];
    int num[MAXN], ln[MAXN], rn[MAXN];
    
    int main(){
    //    freopen("C:\Users\Administrator\Desktop\in.txt","r",stdin);
        int n;
        while(cin>>n){
            n = n << 1;
            fill_n(ln, n, 0);       fill_n(rn, n, 0);
            fill_n(togo, n, 0);     fill_n(num, n, 0);
            int i, j, lft = 0, rit = 0;
            for(i=0; i<n; i++)
                cin>>a[i], num[a[i]]++;
            for(i=10; i<101; i++) if(num[i]>1){
                int tn = num[i], j, heap=1;
                for(j=0; j<n; j++) if(a[j]==i){
                    if(heap==1 && (ln[i]++ == 0)) lft++;
                    else if(heap==2 && (rn[i]++ == 0)) rit++;
                    togo[j]=heap;   heap=3-heap;    tn--;
                    if(heap==1 && tn==1) break;             //odd number of same cubes
                }
            }
    
            for(i=0; i<n; i++) if(num[a[i]]==1){
                if(lft>rit) togo[i]=2, rit++;
                else togo[i]=1, lft++;
            }
            int ans = lft * rit ;
            for(i=0; i<n; i++) if(!togo[i]){
                if(lft>rit) togo[i]=2, rit++;
                else togo[i]=1, lft++;
            }
            cout<<ans<<endl<<togo[0];
            for(i=1; i<n; i++)
                cout<<' '<<togo[i];
            cout<<endl;
        }
        return 0;
    }
    
  • 相关阅读:
    【净界法师】【唯识三十颂05】《唯识三十颂》,什么是唯识呢?
    再谈呼吸调匀、全身放松之重要性
    何时该修十善,何时该念佛
    如何降服贪心
    用内观法切断欲望有何弊病
    洛桑陀美上师开示 | 如何遮止并断除贪爱?
    断除贪爱执着,才可以超越一切局限
    【佛子行浅释】逢遇悦意对境时, 视如夏季之彩虹, 虽显美妙然无实, 断除贪执佛子行。
    佛弟子如何断除对异性的贪爱与相思?益西彭措堪布超级精彩开示
    感人!北大博士出家前写给父母的信
  • 原文地址:https://www.cnblogs.com/ramanujan/p/3364330.html
Copyright © 2020-2023  润新知