• SENIC的使用


    软件介绍

    SENIC是一种同时重建基因调控网络并从单细胞RNA-seq数据中鉴定stable cell states的工具。基于共表达和DNA模基序 (motif)分析推断基因调控网络 ,然后在每个细胞中分析网络活性以鉴定细胞状态

    https://www.nature.com/articles/nmeth.4463
    参考帮助文档:https://rawcdn.githack.com/aertslab/SCENIC/0a4c96ed8d930edd8868f07428090f9dae264705/inst/doc/SCENIC_Running.html#optional_steps:

    输入:SCENIC需要输入的是单细胞RNA-seq表达矩阵—— 每列对应于样品(细胞),每行对应一个基因。基因ID应该是gene-symbol并存储为rownames (尤其是基因名字部分是为了与RcisTarget数据库兼容);表达数据是Gene的reads count。根据作者的测试,提供原始的或Normalized UMI count,无论是否log转换,或使用TPM值,结果相差不大。

    软件的安装

    if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
    
    BiocManager::install(c("AUCell", "RcisTarget"))
    BiocManager::install(c("GENIE3"))
    BiocManager::install(c("zoo", "mixtools", "rbokeh"))
    
    BiocManager::install(c("DT", "NMF", "pheatmap", "R2HTML", "Rtsne"))
    
    BiocManager::install(c("doMC", "doRNG"))
    BiocManager::install(c("SingleCellExperiment"))
    
    if (!requireNamespace("devtools", quietly = TRUE)) install.packages("devtools")
    devtools::install_github("aertslab/SCopeLoomR", build_vignettes = TRUE)
    
    if (!requireNamespace("devtools", quietly = TRUE)) install.packages("devtools")
    devtools::install_github("aertslab/SCENIC")
    packageVersion("SCENIC")
    

    下载评分数据库

    需要下载RcisTarget的物种特定数据库(https://resources.aertslab.org/cistarget/

    For Human,Mouse,Fly

    mm_url="https://resources.aertslab.org/cistarget/databases/mus_musculus/mm9/refseq_r45/mc9nr/gene_based/mm9-500bp-upstream-7species.mc9nr.feather"
    mm_url2="https://resources.aertslab.org/cistarget/databases/mus_musculus/mm9/refseq_r45/mc9nr/gene_based/mm9-tss-centered-10kb-7species.mc9nr.feather"
    hg_url="https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-500bp-upstream-7species.mc9nr.feather"
    hg_url2="https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg19/refseq_r45/mc9nr/gene_based/hg19-tss-centered-10kb-7species.mc9nr.feather"
    fly_url="https://resources.aertslab.org/cistarget/databases/drosophila_melanogaster/dm6/flybase_r6.02/mc8nr/gene_based/dm6-5kb-upstream-full-tx-11species.mc8nr.feather"
    
    wget -c $mm_url
    wget -c $mm_url2
    wget -c $hg_url
    wget -c $hg_url2
    wget -c $fly_url
    

    不同数据格式的读入

    对于loom文件

    download.file("http://loom.linnarssonlab.org/clone/Previously%20Published/Cortex.loom", "Cortex.loom")
    loomPath <- "Cortex.loom"
    

    10x的输出文件

    singleCellMatrix <- Seurat::Read10X(data.dir="data/pbmc3k/filtered_gene_bc_matrices/hg19/")
    cellInfo <- data.frame(seuratCluster=Idents(seuratObject))
    

    R objects (e.g. Seurat, SingleCellExperiment)

    sce <- load_as_sce(dataPath) # any SingleCellExperiment object
    exprMat <- counts(sce)
    cellInfo <- colData(sce)
    

    简单的SENIC工作流程

    setwd("/media/sdb/project/20200223/SCENIC_MouseBrain")
    
    loomPath <- system.file(package="SCENIC", "examples/mouseBrain_toy.loom")
    library(SCopeLoomR)
    loom <- open_loom(loomPath)
    exprMat <- get_dgem(loom)
    cellInfo <- get_cellAnnotation(loom)
    close_loom(loom)
    
    #查看矩阵大小
    #dim(exprMat)
    
    library(SCENIC)
    #scenicOptions <- initializeScenic(org="mgi", dbDir="cisTarget_databases", nCores=10)
    scenicOptions <- initializeScenic(org="mgi", dbDir="/media/sdb/project/20200223/data", nCores=10)
    
    saveRDS(scenicOptions, file="int/scenicOptions.Rds") 
    
    ### Co-expression network
    genesKept <- geneFiltering(exprMat, scenicOptions)
    exprMat_filtered <- exprMat[genesKept, ]
    runCorrelation(exprMat_filtered, scenicOptions)
    exprMat_filtered_log <- log2(exprMat_filtered+1) 
    runGenie3(exprMat_filtered_log, scenicOptions)
    
    ### Build and score the GRN
    exprMat_log <- log2(exprMat+1)
    scenicOptions@settings$dbs <- scenicOptions@settings$dbs["10kb"] # Toy run settings
    runSCENIC_1_coexNetwork2modules(scenicOptions)
    runSCENIC_2_createRegulons(scenicOptions, coexMethod=c("top5perTarget")) # Toy run settings
    runSCENIC_3_scoreCells(scenicOptions, exprMat_log)
    
    # Export: 运行这个时可能报错
    #export2scope(scenicOptions, exprMat)
    
    # Binarize activity?
    # aucellApp <- plotTsne_AUCellApp(scenicOptions, exprMat_log)
    # savedSelections <- shiny::runApp(aucellApp)
    # newThresholds <- savedSelections$thresholds
    # scenicOptions@fileNames$int["aucell_thresholds",1] <- "int/newThresholds.Rds"
    # saveRDS(newThresholds, file=getIntName(scenicOptions, "aucell_thresholds"))
    # saveRDS(scenicOptions, file="int/scenicOptions.Rds")
    runSCENIC_4_aucell_binarize(scenicOptions)
    
    ### Exploring output 
    # Check files in folder 'output'
    # .loom file @ http://scope.aertslab.org
    
    # output/Step2_MotifEnrichment_preview.html in detail/subset:
    motifEnrichment_selfMotifs_wGenes <- loadInt(scenicOptions, "motifEnrichment_selfMotifs_wGenes")
    tableSubset <- motifEnrichment_selfMotifs_wGenes[highlightedTFs=="Sox8"]
    viewMotifs(tableSubset) 
    
    # output/Step2_regulonTargetsInfo.tsv in detail: 
    regulonTargetsInfo <- loadInt(scenicOptions, "regulonTargetsInfo")
    tableSubset <- regulonTargetsInfo[TF=="Stat6" & highConfAnnot==TRUE]
    viewMotifs(tableSubset)
    

    运行SENIC

    建立基因调控网络Gene Regulation Network,GRN):

    1. 基于共表达识别每个转录因子TF的潜在靶标。过滤表达矩阵并运行GENIE3或者GRNBoost,它们是利用表达矩阵推断基因调控网络的一种算法,能得到转录因子和潜在靶标的相关性网络;将目标从GENIE3或者GRNBoost格式转为共表达模块。
    2. 根据DNA模序分析(motif)选择潜在的直接结合靶标(调节因子)(利用RcisTarget包:TF基序分析)

    确定细胞状态及其调节因子
    3. 分析每个细胞中的网络活性(AUCell) 在细胞中评分调节子(计算AUC)

    SCENIC完整流程

    导入数据

    loomPath <- system.file(package="SCENIC", "examples/mouseBrain_toy.loom")
    library(SCopeLoomR)
    loom <- open_loom(loomPath) #mode='r' 如果报错可以加上
    exprMat <- get_dgem(loom)
    cellInfo <- get_cellAnnotation(loom)
    close_loom(loom)
    

    Initialize settings 初始设置,导入评分数据库

    library(SCENIC)
    #先下载数据库,org用来选择物种,这里选择的是小鼠
    scenicOptions <- initializeScenic(org="mgi", dbDir="cisTarget_databases", nCores=10)
    # scenicOptions@inputDatasetInfo$cellInfo <- "int/cellInfo.Rds"
    saveRDS(scenicOptions, file="int/scenicOptions.Rds")
    

    共表达网络

    根据已有的表达矩阵推断潜在的转录因子靶标,使用GENIE3或GRNBoost。首先需要进行基因的过滤。

    genesKept <- geneFiltering(exprMat, scenicOptions=scenicOptions,
                               minCountsPerGene=3*.01*ncol(exprMat),
                               minSamples=ncol(exprMat)*.01)
    

    过滤表达矩阵,保留只有过滤后的基因

    exprMat_filtered <- exprMat[genesKept, ]
    

    计算相关性,这一步时间会比较长

    runCorrelation(exprMat_filtered, scenicOptions)
    exprMat_filtered_log <- log2(exprMat_filtered+1)
    runGenie3(exprMat_filtered_log, scenicOptions)
    

    Build and score the GRN 构建并给基因调控网络(GRN)打分

    exprMat_log <- log2(exprMat+1)
    scenicOptions@settings$dbs <- scenicOptions@settings$dbs["10kb"] # Toy run settings
    runSCENIC_1_coexNetwork2modules(scenicOptions)
    runSCENIC_2_createRegulons(scenicOptions, coexMethod=c("top5perTarget")) # Toy run settings
    runSCENIC_3_scoreCells(scenicOptions, exprMat_log)
    

    输入表达矩阵

    在本教程中,我们提供了一个示例,样本是小鼠大脑的200个细胞和862个基因:

    loomPath <- system.file(package="SCENIC", "examples/mouseBrain_toy.loom")
    

    打开loom文件并加载表达矩阵;

    library(SCopeLoomR)
    loom <- open_loom(loomPath, mode="r")
    exprMat <- get_dgem(loom)
    cellInfo <- get_cellAnnotation(loom)
    close_loom(loom)
    #dim(exprMat)
    

    细胞信息/表型

    # cellInfo$nGene <- colSums(exprMat>0)
    head(cellInfo)
    

    cellInfo <- data.frame(cellInfo)
    cellTypeColumn <- "Class"
    colnames(cellInfo)[which(colnames(cellInfo)==cellTypeColumn)] <- "CellType"
    cbind(table(cellInfo$CellType))
    

    saveRDS(cellInfo, file="int/cellInfo.Rds")
    
    # Color to assign to the variables (same format as for NMF::aheatmap)
    colVars <- list(CellType=c("microglia"="forestgreen",
                                "endothelial-mural"="darkorange",
                                "astrocytes_ependymal"="magenta4", 
                                "oligodendrocytes"="hotpink", 
                                "interneurons"="red3",
                                "pyramidal CA1"="skyblue",
                                "pyramida SS"="darkblue"
                                ))
    colVars$CellType <- colVars$CellType[intersect(names(colVars$CellType), cellInfo$CellType)]
    saveRDS(colVars, file="int/colVars.Rds")
    plot.new()
    legend(0,1, fill=colVars$CellType, legend=names(colVars$CellType))
    

    初始化SCENIC设置

    为了在SCENIC的多个步骤中保持设置一致,SCENIC包中的大多数函数使用一个公共对象,该对象存储当前运行的选项并代替大多数函数的“参数”。比如下面的orgdbDir等,可以在开始就将物种rog(mgi—— mouse, hgnc —— human, dmel —— fly)和RcisTarge数据库位置分别读给对象orgdbDir,之后统一用函数initializeScenic得到对象scenicOptions。具体参数设置可以用?initializeScenichelp一下。

    library(SCENIC)
    org="mgi" # or hgnc, or 
    dmeldbDir="cisTarget_databases" # RcisTarget databases location
    myDatasetTitle="SCENIC example on Mouse brain" # choose a name for your analysis
    data(defaultDbNames)
    dbs <- defaultDbNames[[org]]
    scenicOptions <- initializeScenic(org=org, dbDir=dbDir, dbs=dbs, datasetTitle=myDatasetTitle, nCores=10)
    

    # 如果有需要就修改这个地方
    scenicOptions@inputDatasetInfo$cellInfo <- "int/cellInfo.Rds
    "scenicOptions@inputDatasetInfo$colVars <- "int/colVars.Rds"
    # Databases:
    # scenicOptions@settings$dbs <- c("mm9-5kb-mc8nr"="mm9-tss-centered-5kb-10species.mc8nr.feather")
    # scenicOptions@settings$db_mcVersion <- "v8"
    # Save to use at a later time...
    saveRDS(scenicOptions, file="int/scenicOptions.Rds")
    

    共表达网络

    SCENIC工作流程的第一步是根据表达数据推断潜在的转录因子靶标。为此,我们使用GENIE3或GRNBoost,输入文件是表达矩阵(过滤后的)和转录因子列表。GENIE3/GRBBoost的输出结果和相关矩阵将用于创建共表达模块(runSCENIC_1_coexNetwork2modules())。

    基因过滤/选择

    • 按每个基因的reads总数进行过滤。该filter旨在去除最可能是噪音的基因。默认情况下,它(minCountsPerGene)保留所有样品中至少带有6个UMI reads的基因(例如,如果在1%的细胞中以3的值表达,则基因将具有的总数)。
    • 通过基因的细胞数来实现过滤(例如 UMI > 0 ,或log 2(TPM)> 1 )。默认情况下(minSamples),保留下来的基因能在至少1%的细胞中检测得到。
    • 最后,只保留RcisTarget数据库中可用的基因。
    # (Adjust minimum values according to your dataset)
    genesKept <- geneFiltering(exprMat, scenicOptions=scenicOptions, 
                                minCountsPerGene=3*.01*ncol(exprMat),
                                minSamples=ncol(exprMat)*.01)
    

    在进行网络推断之前,检查是否有任何已知的相关基因被过滤掉(如果缺少任何相关基因,请仔细检查filter设置是否合适):

    interestingGenes <- c("Sox9", "Sox10", "Dlx5")
    interestingGenes[which(!interestingGenes %in% genesKept)]
    

    相关性

    GENIE33或者GRNBoost可以检测正负关联。为了区分潜在的激活和抑制,我们将目标分为正相关和负相关目标(比如TF与潜在目标之间的Spearman相关性)。

    runCorrelation(exprMat_filtered, scenicOptions)
    

    运行GENIE3得到潜在转录因子TF

    ## If launched in a new session, you will need to reload...
    # setwd("...")
    # loomPath <- "..."
    # loom <- open_loom(loomPath, mode="r")
    # exprMat <- get_dgem(loom)
    # close_loom(loom)
    # genesKept <- loadInt(scenicOptions, "genesKept")
    # exprMat_filtered <- exprMat[genesKept,]
    # library(SCENIC)
    # scenicOptions <- readRDS("int/scenicOptions.Rds")
    # Optional: add log (if it is not logged/normalized already)
    exprMat_filtered <- log2(exprMat_filtered+1)
    # Run GENIE3
    runGenie3(exprMat_filtered, scenicOptions)
    

    构建并评分GRN(runSCENIC_ …)

    必要时重新加载表达式矩阵:

    loom <- open_loom(loomPath, mode="r")
    exprMat <- get_dgem(loom)
    close_loom(loom)
    # Optional: log expression (for TF expression plot, it does not affect any other calculation)
    logMat <- log2(exprMat+1)
    dim(exprMat)
    

    使用wrapper函数运行其余步骤:

    library(SCENIC)
    scenicOptions <- readRDS("int/scenicOptions.Rds")
    scenicOptions@settings$verbose <- TRUE
    scenicOptions@settings$nCores <- 10
    scenicOptions@settings$seed <- 123
    # For a very quick run:
    # coexMethod=c("top5perTarget")
    scenicOptions@settings$dbs <- scenicOptions@settings$dbs["10kb"] # For toy run
    # save...
    runSCENIC_1_coexNetwork2modules(scenicOptions)
    runSCENIC_2_createRegulons(scenicOptions, coexMethod=c("top5perTarget")) #** Only for toy run!! 只用于测试数据
    runSCENIC_3_scoreCells(scenicOptions, logMat)
    

    可选步骤

    将network activity转换成ON/OFF(二进制)格式

    nPcs <- c(5) # For toy dataset
    # nPcs <- c(5,15,50)
    
    scenicOptions@settings$seed <- 123 # same seed for all of them
    #使用不同的参数运行t-SNE
    fileNames <- tsneAUC(scenicOptions, aucType="AUC", nPcs=nPcs, perpl=c(5,15,50))
    fileNames <- tsneAUC(scenicOptions, aucType="AUC", nPcs=nPcs, perpl=c(5,15,50), onlyHighConf=TRUE, filePrefix="int/tSNE_oHC")
    # 画图 (individual files in int/):
    fileNames <- paste0("int/",grep(".Rds", grep("tSNE_", list.files("int"), value=T), value=T))
    
    par(mfrow=c(length(nPcs), 3))
    fileNames <- paste0("int/",grep(".Rds", grep("tSNE_AUC", list.files("int"), value=T, perl = T), value=T))
    plotTsne_compareSettings(fileNames, scenicOptions, showLegend=FALSE, varName="CellType", cex=.5)
    

    # Using only "high-confidence" regulons (normally similar)
    par(mfrow=c(3,3))
    fileNames <- paste0("int/",grep(".Rds", grep("tSNE_oHC_AUC", list.files("int"), value=T, perl = T), value=T))
    plotTsne_compareSettings(fileNames, scenicOptions, showLegend=FALSE, varName="CellType", cex=.5)
    

    输出到 loom/SCope

    SCENIC生成的结果既能在http://scope.aertslab.org查看,还能用函数export2scope()(需要SCopeLoomR包)保存成.loom文件。

    # DGEM (Digital gene expression matrix)
    # (non-normalized counts)
    # exprMat <- get_dgem(open_loom(loomPath))
    # dgem <- exprMat
    # head(colnames(dgem))  #should contain the Cell ID/name
    # Export:
    scenicOptions@fileNames$output["loomFile",] <- "output/mouseBrain_SCENIC.loom"
    export2scope(scenicOptions, exprMat)
    

    加载.loom文件中的结果

    SCopeLoomR中也有函数可以导入.loom文件中的内容,比如调节因子,AUC和封装内容(比如regulon activityt-SNE和UMAP结果)。

    
    library(SCopeLoomR)
    scenicLoomPath <- getOutName(scenicOptions, "loomFile")
    loom <- open_loom(scenicLoomPath)
    # Read information from loom file:
    regulons_incidMat <- get_regulons(loom)
    regulons <- regulonsToGeneLists(regulons_incidMat)
    regulonsAUC <- get_regulonsAuc(loom)
    regulonsAucThresholds <- get_regulonThresholds(loom)
    embeddings <- get_embeddings(loom)
    
    

    解读结果

    1. 细胞状态

    AUCell提供跨细胞的调节子的活性,AUCell使用“Area under Curve 曲线下面积”(AUC)来计算输入基因集的关键子集是否在每个细胞的表达基因中富集。通过该调节子活性(连续或二进制AUC矩阵)来聚类细胞,我们可以看出是否存在倾向于具有相同调节子活性的细胞群,并揭示在多个细胞中反复发生的网络状态。这些状态等同于网络的吸引子状态。将这些聚类与不同的可视化方法相结合,我们可以探索细胞状态与特定调节子的关联。

    将AUC和TF表达投射到t-SNE上

    logMat <- exprMat # Better if it is logged/normalized
    aucellApp <- plotTsne_AUCellApp(scenicOptions, logMat) # default t-SNE
    savedSelections <- shiny::runApp(aucellApp)
    
    print(tsneFileName(scenicOptions))
    
    
    tSNE_scenic <- readRDS(tsneFileName(scenicOptions))
    aucell_regulonAUC <- loadInt(scenicOptions, "aucell_regulonAUC")
    # Show TF expression:
    par(mfrow=c(2,3))
    AUCell::AUCell_plotTSNE(tSNE_scenic$Y, exprMat, aucell_regulonAUC[onlyNonDuplicatedExtended(rownames(aucell_regulonAUC))[c("Dlx5", "Sox10", "Sox9","Irf1", "Stat6")],], plots="Expression")
    
    

    # 保存AUC图片:
    Cairo::CairoPDF("output/Step4_BinaryRegulonActivity_tSNE_colByAUC.pdf", width=20, height=15)
    par(mfrow=c(4,6))
    AUCell::AUCell_plotTSNE(tSNE_scenic$Y, cellsAUC=aucell_regulonAUC, plots="AUC")
    dev.off()
    
    library(KernSmooth)
    
    library(RColorBrewer)
    dens2d <- bkde2D(tSNE_scenic$Y, 1)$fhat
    image(dens2d, col=brewer.pal(9, "YlOrBr"), axes=FALSE)
    contour(dens2d, add=TRUE, nlevels=5, drawlabels=FALSE)
    
    

    #par(bg = "black")
    par(mfrow=c(1,2))
    regulonNames <- c( "Dlx5","Sox10")
    cellCol <- plotTsne_rgb(scenicOptions, regulonNames, aucType="AUC", aucMaxContrast=0.6)
    text(0, 10, attr(cellCol,"red"), col="red", cex=.7, pos=4)
    text(-20,-10, attr(cellCol,"green"), col="green3", cex=.7, pos=4)
    regulonNames <- list(red=c("Sox10", "Sox8"),
                         green=c("Irf1"),
                         blue=c( "Tef"))
    cellCol <- plotTsne_rgb(scenicOptions, regulonNames, aucType="Binary")
    text(5, 15, attr(cellCol,"red"), col="red", cex=.7, pos=4)
    text(5, 15-4, attr(cellCol,"green"), col="green3", cex=.7, pos=4)
    text(5, 15-8, attr(cellCol,"blue"), col="blue", cex=.7, pos=4)
    

    GRN:Regulon靶标和模序

    regulons <- loadInt(scenicOptions, "regulons")
    regulons[c("Dlx5", "Irf1")]
    

    regulons <- loadInt(scenicOptions, "aucell_regulons")
    head(cbind(onlyNonDuplicatedExtended(names(regulons))))
    

    regulonTargetsInfo <- loadInt(scenicOptions, "regulonTargetsInfo")
    tableSubset <- regulonTargetsInfo[TF=="Stat6" & highConfAnnot==TRUE]
    viewMotifs(tableSubset)
    

    2. 细胞群的调控因子

    regulonAUC <- loadInt(scenicOptions, "aucell_regulonAUC")
    regulonAUC <- regulonAUC[onlyNonDuplicatedExtended(rownames(regulonAUC)),]
    regulonActivity_byCellType <- sapply(split(rownames(cellInfo), cellInfo$CellType),function(cells) rowMeans(getAUC(regulonAUC)[,cells]))
    regulonActivity_byCellType_Scaled <- t(scale(t(regulonActivity_byCellType), center = T, scale=T))
    pheatmap::pheatmap(regulonActivity_byCellType_Scaled, color=colorRampPalette(c("blue","white","red"))(100), breaks=seq(-3, 3, length.out = 100),treeheight_row=10, treeheight_col=10, border_color=NA)
    

    # filename="regulonActivity_byCellType.pdf", width=10, height=20)
    topRegulators <- reshape2::melt(regulonActivity_byCellType_Scaled)
    colnames(topRegulators) <- c("Regulon", "CellType", "RelativeActivity")
    topRegulators <- topRegulators[which(topRegulators$RelativeActivity>0),]
    viewTable(topRegulators)
    
    minPerc <- .7
    binaryRegulonActivity <- loadInt(scenicOptions, "aucell_binary_nonDupl")
    cellInfo_binarizedCells <- cellInfo[which(rownames(cellInfo)%in% colnames(binaryRegulonActivity)),, drop=FALSE]
    regulonActivity_byCellType_Binarized <- sapply(split(rownames(cellInfo_binarizedCells), cellInfo_binarizedCells$CellType),function(cells) rowMeans(binaryRegulonActivity[,cells, drop=FALSE]))
    binaryActPerc_subset <- regulonActivity_byCellType_Binarized[which(rowSums(regulonActivity_byCellType_Binarized>minPerc)>0),]
    pheatmap::pheatmap(binaryActPerc_subset,color = colorRampPalette(c("white","pink","red"))(100), breaks=seq(0, 1, length.out = 100),treeheight_row=10, treeheight_col=10, border_color=NA)
    

  • 相关阅读:
    Postman初探
    web页面和本地数据对比问题
    Katalon Recorder初探
    Flask入门
    自我实现预言
    gulp 安装 依赖
    maven环境
    加解密 生成 X.509格式,DER编码,后缀名.cer。加密公钥证书
    我的魔法 公式找回中
    gulp 自动ftp至服务器时,处理开发 测试服务器地址问题
  • 原文地址:https://www.cnblogs.com/raisok/p/12425225.html
Copyright © 2020-2023  润新知