题意:给定一个64位整数,问是否为质数,如果不是,则输出其最小因子。
分析:
经典题!!
数学题
miller_rabbin素数判定。若不是,则pollard_rho分解质因子,找到最小即可。
Miller-rabin
Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法。它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于1。也就是对于所有小于p的正整数a来说都应该复合a^(p-1) mod p恒等于1。那么根据逆否命题,对于一个p,我们只要举出一个a(a<p)不符合这个恒等式,则可判定p不是素数。Miller-rabin算法就是多次用不同的a来尝试p是否为素数。
但是每次尝试过程中还做了一个优化操作,以提高用少量的a检测出p不是素数的概率。这个优化叫做二次探测。它是根据一个定理:如果p是一个素数,那么对于x(0<x<p),若x^2 mod p 等于1,则x=1或p-1。逆否命题:如果对于x(0<x<p),若x^2 mod p 不等于1,则p不是素数。根据这个定理,我们要计算a^(p-1) mod p是否等于1时,可以这样计算,设p-1=(2^t) * k。我们从a^k开始,不断将其平方直到得到a^(p-1),一旦发现某次平方后mod p等于1了,那么说明符合了二次探测定理的逆否命题使用条件,立即检查x是否等于1或p-1,如果不是则可直接判定p为合数。
pollard-rho
这是一个用来快速对整数进行质因数分解的算法,需要与Miller-rabin共同使用。求n的质因子的基本过程是,先判断n是否为素数,如果不是则按照一个伪随机数生成过程来生成随机数序列,对于每个生成的随机数判断与n是否互质,如果互质则尝试下一个随机数。如果不互质则将其公因子记作p,递归求解p和n/p的因子。如果n是素数则直接返回n为其素因子。
至于这个随机数序列是如何生成的暂时还不能理解,而且也是有多种不同的方式。这个序列生成过程中会产生循环,遇到循环则立即退出。
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <iostream>
constint S=20;
usingnamespace std;
typedef longlong LL;
#define maxn 10000
LL factor[maxn];
int tot;
LL muti_mod(LL a,LL b,LL c){ //返回(a*b) mod c,a,b,c<2^63
a%=c;
b%=c;
LL ret=0;
while (b){
if (b&1){
ret+=a;
if (ret>=c) ret-=c;
}
a<<=1;
if (a>=c) a-=c;
b>>=1;
}
return ret;
}
LL pow_mod(LL x,LL n,LL mod){ //返回x^n mod c ,非递归版
if (n==1) return x%mod;
int bit[64],k=0;
while (n){
bit[k++]=n&1;
n>>=1;
}
LL ret=1;
for (k=k-1;k>=0;k--){
ret=muti_mod(ret,ret,mod);
if (bit[k]==1) ret=muti_mod(ret,x,mod);
}
return ret;
}
bool check(LL a,LL n,LL x,LL t){ //以a为基,n-1=x*2^t,检验n是不是合数
LL ret=pow_mod(a,x,n),last=ret;
for (int i=1;i<=t;i++){
ret=muti_mod(ret,ret,n);
if (ret==1&& last!=1&& last!=n-1) return1;
last=ret;
}
if (ret!=1) return1;
return0;
}
bool Miller_Rabin(LL n){
LL x=n-1,t=0;
while ((x&1)==0) x>>=1,t++;
bool flag=1;
if (t>=1&& (x&1)==1){
for (int k=0;k<S;k++){
LL a=rand()%(n-1)+1;
if (check(a,n,x,t)) {flag=1;break;}
flag=0;
}
}
if (!flag || n==2) return0;
return1;
}
LL gcd(LL a,LL b){
if (a==0) return1;
if (a<0) return gcd(-a,b);
while (b){
LL t=a%b; a=b; b=t;
}
return a;
}
LL Pollard_rho(LL x,LL c){
LL i=1,x0=rand()%x,y=x0,k=2;
while (1){
i++;
x0=(muti_mod(x0,x0,x)+c)%x;
LL d=gcd(y-x0,x);
if (d!=1&& d!=x){
return d;
}
if (y==x0) return x;
if (i==k){
y=x0;
k+=k;
}
}
}
void findfac(LL n){ //递归进行质因数分解N
if (!Miller_Rabin(n)){
factor[tot++] = n;
return;
}
LL p=n;
while (p>=n) p=Pollard_rho(p,rand() % (n-1) +1);
findfac(p);
findfac(n/p);
}
int main(){
srand(time(NULL));
int t;
scanf("%d",&t);
while (t--){
LL n;
scanf("%I64d",&n);
if (!Miller_Rabin(n)) printf("Prime\n");
else{
tot =0;
findfac(n);
LL ans=n;
for (int i =0; i < tot; i++)
ans = min(ans, factor[i]);
printf("%lld\n",ans);
}
}
}